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ABSTRACT

This paper presents a method for finding the state of the detonation
products for a plane detonation wave utilizing the two-dimensional steady-
state hydrodynamics equations and the method of characteristics. It is shown
that in those cases where the equation of state gives pressure along the adiabat
as a function of density (only), the characteristic equations can be solved
analytically in velocity space for the plane problem. A numerical method for
the solution in coordinate space is then developed using the solution in velocity
space in conjunction with the geometric relationship between characteristic
curves in the two spaces. In this manner the difficulty encountered due to the
coincidence of the detonation front and two characteristic curves in coordinate
space is overcome. The derivations involved are included as appendices.

The body of the paper describes the application of the technique for an ideal
gas equation of state and for an equation of state developed by Mark Wilkins
(UCRL-7797). A further application is described in which this solution is
used to start a solution for a steady state detonation in cylindrical geometry.
The results are reported for PBX 9404 in the form of graphs produced by the
computing facilities on a cathode ray tube from the computer programs

described.

GENERAL INTRODUCTION

In the course of work at the LLawrence Radiation Laboratory (Livermore)
with the numerical calculation of the detonation of high explosives employing
finite difference techniques directly on the differential equations of continuum
mechanics as described in reference 1 (the HEMP code), it was decided that
some kind of independent check on the ability of HEMP to calculate a steady
state detonation was desirable. The objective was to establish that HEMP
could sustain a steady state solution over a "long'" time and to establish
confidence in the numerical values of the variables calculated. It is well
known that the method of characteristics enjoys the confidence of a large
number of people and would, therefore, be a good method to accomplish both
objectives. The work described here was undertaken with this in mind,

It will be noted that the computer programs written lack "polish'" and
cannot be used in present form as production codes to generate solutions to

all the ""practical" problems one would desire. This lack of polish should be




judged in the light of the objectives described in the paragraph above. The

work was directed toward demonstrating that the method could be employed,

and then working a representative problem which could be used to check .
against the same problem solved on HEMP. These objectives have been met.

(This comparison will be made in a report by Mark Wilkins to be issued later.)

The report itself has been written with an eye toward self-containment.
It seemed desirable to include everything that is necessary for a thorough
understanding of the development of the numerical methods employed, For
the most part this work has been confined to the appendices.

Sections I and II are devoted to the solution of a steady state detonation
in plane geometry and section III describes the steady state problem in
cylindrical geometry. The check of HEMP was to be made with the plane
problem, and the cylindrical problem was included because it appeared that |
a need was developing for a production code for cylindrical steady-state
detonations in connection with experimental programs under way at the
Lawrence Radiation Laboratory studying material properties. Such a code
employing the method of characteristics would be considerably faster than
HEMP for this problem. The program described merely demonstrates that
the technique of section III could be employed to build such a code.

I take this opportunity to offer my thanks to Mark Wilkins for proposing
the project and encouraging me throughout, to John Hardy fof his suggestions
that helped transform my thoughts into deeds, to Fred Fritsch, Don Emery,
and especially Gloria Scoggin for their instructions and aid in ‘programming
and debugging, and to the many people of the Technical Information Division

for their talent and patience.

GENERAL DISCUSSION

It is generally accepted that the state of the detonation products of a
high explosive (H. E.) can be accurately calculated using the hydrodynamics .
equations behind the detonation front and the Hugoniot equations across the
front in conjunction with the Chapman-Jouguet hypothesis (see ref. 2). It is .
well known that the flow behind the front, relative to the front, is supersonic,
and that if the detonation products are assumed to be nonviscous and non-
conducting while the flow is assumed to be irrotational and isentropic, then

the steady-state hydrodynamics equations are hyperbolic. For hyperbolic

equations, the method of characteristics can be employed in those cases




where thé boundary conditions are given on a curve that is not itself a
characteristic curve. For the two-dimensional steady-state detonation it
happens that the detonation front is both a boundary curve and a characteristic
curve, In fact the front occurs where two characteristic curves become co-
incident, Therefore, to use the method of characteristics for this problem,
it is necessary to devise a procedure to generate information behind this
front where the method can be used.

Pack and Hill devised a method employing an expansion in power series
from the front (see ref, 3). The method described on the following pages
employs the hodograph transformation which transforms the detonation front
from a line in coordinate space to a point and a characteristic curve in
velocity space (see appendix 6 for details). It is then possible to use the
geometric relation between characteristic curves in the two spaces to solve
the problem numerically, This method requires an equation of state for the
detonation products which results, through Bernoulli' s equation, in a sound
speed, or relative volume, that is a function of the two velocity components.,
This is the same as requiring that the pressure be a function of density, only,
along an adiabat. It was not possible to make a direct comparison with the
Pack and Hill results because the equation of state they used was tabular but
the '""'shapes'' of the curves they give are the same as those shown in this
report. The method used here seems to be easier to use and does not in-
volve as many assumptions.

To work the plane problem using Wilkins' equation of state (see ref, 4)
it was necessary to evaluate an improper integral (see part B, section II)
that is shown to converge in appendix 10. As a further check on this integral
it was evaluated for an ideal gas using the input constants shown in part D,
section III, and the problem discussed in section I was worked using the
program described in section II. The results of this are not included but
when the plots obtained were compared with the plots in section I, they were
identical. The ideal gas equation of state can, therefore, be included in a
program written for the Wilkins equation of state, and this was done for the
cylindrical program,

The data displayed in Figs. 2-15 and 17-19 were included to illustrate
the kind of information available directly from the programs as written,

With the exception of Fig. 19, the data were plotted by the computing facilities
at Lawrence Radiation Laboratory (Livermore) from the tapes generated on

the CDC 3600 high speed computer directly from the programs described.




CONCLUSIONS

The work herein described demonstrates that the method of character-
istics can be employed to determine the state of the products of a plane
steady-state detonation by using the hodograph transformation and the
geometric relationship between the characteristic curves in the velocity
space and those in the coordinate spaceAto generate information behind the
detonation front, It is also demonstrated that with some experimentation it
would be possible to use the solution to the plane problem to build a production

code for '""rapid" solutions to cylindrical steady-state detonation problems.




I. A PLANE TWO-DIMENSIONAL DETONATION FOR AN EXPLOSIVE
WITH AN IDEAL GAS EQUATION OF STATE

Introduction

In parts A through D below is presented the solution of a plane two-
dimengional steady-state detonation of an explosive with an ideél gas equation
of state employing the method of characteristics. Part A gives an outline of
the derivation of the basic equations governing the motion; part B gives a
description of the numerical method used; part C describes the example
problem solved; and part D gives a description of the program 'card decks

available,

A. Calculation of the Two-Dimensional Steady-State Detonation

for an Ideal-Gas-Type Explosive

‘The general equations governing the motion of a steady state, non-
viscous, nonconducting medium in the absence of body forces in a plane are

(see appendix 1):
Conservation of Mass

9(pu) 4 9(pv) _ 0

0x dy ’
Conservation of Momentum
% du,  du
ox  PUax TPV oy
op ov ov

Conservation of Energy

2 2 2 2
9 ue + v 0 u” +v . 9(pu) 9(pv)
puéxG“L 2 >+pv3'>7<€+"—2_“>'_5§ oy ¢

Entropy Principle



where

p = mass density,
u = velocity in the x direction, €
v = velocity in the y direction,

(x, y) = rectangular coordinates, .
p = hydrostatic pressure,
€ = internal energy per unit mass,
n = entropy per unit mass.

If it is assumed that the material has the ideal gas equation of state,

Y n-n
._Iz_ = (_B_) exp ( 0>
Py Po Cyv

where
v = cp/ C
Cp = gpecific heat at constant pressure,
c, ” specific heat at constant volume,

and further assumed that the material is isentropic and irrotational, these

equations can be replaced by the following equations (see appendix 1):

ov 2, ov

2 2, 9u ou 2 _
(a —u)-a—}z-uv<-5-};+-5-§ + (a —v)-a—y—O,
(1)
ou 3v_0
where a2=-g-g)n =1§5 sound speed,

It can also be shown that along path lines (flow lines)
2

2 2 a
v -1

u” + v+ = constant (2)

so that only the variables x, y, u, v are involved in these equations. From .

the ideal gas equation of state it can be shown that:




2 1
oo (22T
i
p
-yp -0
o 5 =7 (3)
a
€=—p\—]——,(seeRef. 2)
vy -1
E'poe

where
€ = internal energy per unit mass,
Py Py 2 are values at some initial point,
V = relative volume,

Po = reference density.

The problem is then reduced to finding u and v and using the relations
above to find the other variables of interest. In this treatment the equations
(1) were solved numerically by the use of the method of characteristics. The
equations cail be shown to be hyperbolic (see appendix 2) and if the so-called
hodograph transformation is made, i.e., if the equations are recast with u, v
as the independent variables, four equations result (see appendix 3). Two
equations are for characteristics in the u, v, plane (I") and two are for
characteristics in the x, y plane (C), which last are also ''compatibility rela-

tions' that hold along I curves. These four relations are:

T.. dv _ <uv+a\/u2+v2-az>

1° du

along which

uv+a\/u2+v2 —a2 dx

. - dy
€y 7 2 do  do
u - a
_ (4)
r dv _ uv—a\/u2+v2—a2
2° du 2 2 :
vT - a
along which
c.. Ww-a u2+v2—a2%:§l
2’ 2 2 dg dg ’




where o and B are parameters along Pl and P2 respectively, provided that

u2+V2—a2>O.

Now if one lets ’ ‘
+

Y

Y

then one can show (see appendix 5) that the equations (4) may be written as

angle the I', curve makes with the positive u axis,

1
angle the 1“2 curve makes with the positive u axis, -

1

r VT (tan (//+) u,
+ -1
C:y = X
¢ tany~ ¢
(5)
T~ vg = (tany ™) ug -
C: =

Yo = = X5 >
g tanz//+ B

where A = oA , and the T" and C curves can be designated I", = I‘+, C,=C,
o Oda 1 2

etc. because of the particular way in which they are related (see below).
Note that the C' and I~ curves are perpendicular as are C~ and rt.

The coordinate system used is one in which the detonation front is
considered to be at rest and the initial values of the dependent variables are
those determined by the Chapman-Jouguet hypothesis (see appendix 4). Only
the ""upper'' half of the slab is considered since the other half is the reflection
of the one considered.

In appendices 6 and 7 it is shown that the equations for I‘+ and I'" can be
solved in parametric form. They are shown to be epicycloids generated by a

circle of radius q (see below) rolling on a circle of radius ac—j’ where

aC'J = the Chapman-Jouguet sound speed,
a = .}_. _]; - l\) a
q - 2 “ C'—j 3 -
2 vy -1
,J' ,Y + 1 F}

v = specific heat ratio.

+ —
The I curves are generated if the circle of radius g rotates counterclock-

wise, and the I’ curves are generated if it rolls clockwise. The constant in

equation (2) is determined in appendix 6 and designated a = ac_j/u, and is




shown to be the locus of points where the sound speed is zero. There are two
parameters involved in the solutions. The first is the angle subtended at the
center of the circle of radius ac_j by the center of the rolling circle when it
is in its initial position @ ). The second is the angle subtended at the center
of the circle of radius ac—j by the center of the rolling circle as it rolls (),
measured with respect to the initial position. In terms of these parameters

the I' curves are given by

a .+q
(a .t (—1—) COS(B + (//>’<) - a COos —g-_.]—_—_ B + (l/f: s
Cc-] 0 a— :

ot
H

(6)

<
11

_ _ a i+t q
(@ . +@ sin+y,) - asin | —L—B+y,].
C_J K — b
q
For ¢, <0, B> 0 the F+ curves are generated, and for ¢, >0, B < 0 the o
curves are generated.

In terms of these same variables the C curves are given by

B tan( _Bl +¢*) B | @

1 -p

For ¢, > 0, B <0 the C+ curves are generated, and for ¢, < 0, B8 >0 the o
curves are generated.

It can be shown (see appendix 6) that for this type of problem the solu-
tion in the u, v plane is contained in the region enclosed by u2 + V2 = az,
v = 0, and I‘+, where I“g is generated by (6) withy, = 0 and 8 > 0.

Up to this point the solution has presented no particular difficulties,
but equations (4) can only be written, and hence the "'solutions'" (6) and (7), if

u2 + V2 - a2 > 0. Using the results in appendix 4, it is seen that at the front,

u2 + v2 - a2 = u2 - az_. = 0, This means that the detonation front is both a

c-]

+ -

C and C characteristic (the equations are parabolic). In the theory of
characteristics it is shown that the method can be applied if the boundary
along which data are given is not a characteristic, but in this case it is, The

way this difficulty was handled is discussed in appendix 6.
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B. Numerical Method

The equations to be solved are (see appendix 6)

+  2U + 4 +
r": 2% -5 =R, cos 8" +yy) - Ry cos [(RZ/RB)B +¢*],

c-]

(1) )

oV .
A "M Ry
c-j

sin (B+ + L[/::,) - Rq sin [(RZ/R3)B+ + (//+],

along which

oo - -1t ),

and
P AZU. =6 = R, cos B +tyy) - R4 cos [(R2/R3)B- +¢/:;<J s
c-]
(2)
Ai\jj =X = R, sin (87 +y}) - Ry sin [(RZ/RB)B‘ +w;] ;

along which :
+
dy/dx= —1/tan <—iﬁ:'l—;+l//::> s

where
0 _<_B+ <l -up)/2u, 0>B" >-m(1 - u)/2u, generally,
+ - (3)
and 0>y, >m(l -u)/2u, 0<y, <7l -pu.

+ -
Specifically the limits on 3 and 8 are determined by the rt curve with

(//+ = 0 and » = 0 as well as by the circle u? +v2 = A2 ./uz
c-j

, as given in detail
in appendix 6.

The nature of the above relations demands a numerical solution. The
procedure will be to assign values of (//+ and 1//; which will be used to determine
B+ and 8~ and hence U and V, then to determine X and Y by making numerical .
integration of the compatibility conditions.

To that end several general relations will be derived below: Suppose
that one is given ¢;+ and ¢;< and is required to find B~ and B+ at the intersection
of I and I'". Equations (1) and (2) are used to give

R

R, cos (B+ + gb::) - Rgq cos<R—§— B+ + (//+) = Ry cos B +yy)

R
- Ry cos<R—§ B~ + ¢~> (4a)
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and
R, sin@" +y ;) - Ry sin [(RZ/R3)8+ +¢+] = Ry sin(” +¢3)

- Rq sin [(R2/R3)B_ + 1//_] . (4b)
Eq. (4) may be rewritten as

R, [cos(B+ + (//;) - cos(B™ + w; )} = R3{cos [(1:{2/R3)BJr + ¢+}

- cos [(Ry/Rg)E™ + ¢]} (52)
and

R, [sin(B+ +yr) - sin@ + w;)] = RB{sin [(Rz/R3)5+ + ¢+]

- sin [(RZ/RS)B_ +¢/;]} . (5b)
The following relations are easily derived from trigonometry:

cosy - cos O = 2 sin %(6+¢/) sin%(e—w) s

(6)
sin @ - siny = 2 cos—i—(9+¢;‘ siné—(e -y) .
Using (6) in (5):
R RTINS B e
2R2 sSin '2_(8 +B +¢/>{:+d/>:<) Sln-2-<8 - B +¢/>:< —lp;k)
(7)

< 2Ry sin g [(Ry/R)@ET +87) +l v u] sin 5 [Ry/ROE" - 67 + v - ]
and

2Ry cos 3 (37 + BT HyLt ) sing BT - BTyl - vy)
o T (8)

= 2Ry cos 3| (Ry/Rg)@" +B7) +y} + v3) sing [®y/RE - 87 +yk - vk
Dividing equation (7) by (8):
tan% (B+ + B+ t//+ + w;) = tan% [(Rz/RB)(B+ +B7) + ¢+ + w'J . (9)

From equation (9):

B+ BT ALl By/ROET+BT) Hyl ]
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or
(1 - Ry/Ry)B" +87)=0. (10)

Recalling the definitions of R2 and R3 from equation (53), appendix 6:

- L+up o -2u . -
1 - Ry/Rg 1-1— I_M#O,

hence, (10) yields
B =B, (11)

. . + -
Hence, the general statement: At the intersection of any pair of I and I'

F - . ¥ -
characteristics one need only determine one of B and B since § = -f at

such intersection points.
Now putting (11) in (7) and (8) yields:

R I A S S T S 1+, -
2R2 sin —2—((//* +¢/*> sin 5 <2B ty, - (//*) = 2R3 sin §<¢/* +w*>

2R
.1 2 Lt + -~
X Sll’l"2“ <—R—; B + W* B 1?0>k> ’

from which
R R :
. +, 1/ + - 3 . 2+, 1/( + -
sin {B +—2—<l//* - l[/*ﬂ - —R; sm[T{—S-B + §<(//* - (//*)} =0. (12)
+
Equation (12) is then solved for 8 . As indicated in appendix 6, along the
boundary A = 0, (//+ = —1//;:. Using this relation in (12), the value of B+ along .

X = 0 is given by the solution of

R R
sin(B+ + 1//+) - ﬁg sin(E—'zz— B+ + x//+> =0, (13)

which is seen to agree with setting v = 0 in (1),

+ +
The other boundary where 8 is in question is the PO curve along which

+ :
Y. = 0. The value of B+ along PO is then found from the solution of
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R

R :
sin<B+—%z//:k> —R—gsin[RiﬁJr-—lg }—0. (14)

From equation (17), appendix 6, the sound speed A may be determined from

; |
A%

I ( c-j _y? . V2> (1—5—1—) i (15)
U’\ .

Therefore, given a pair of I' curves, by specifying ¢;+ and (//:k one determines
B+ from (13) or (14). With B+, one can use (1) or (2) to determine U and V
and (15) to determine A so that the problem is completely solved in the U, V
plane since knowing A one can find the pressure from equation (19), appendix
1, and the density from equation (18), appendix 1, etc. The problem now is
to determine X and Y at each B+ in the U, V plane. The known values of X, Y

are (see Fig, 1):

Y
X

0 along A = 0
0, Y = b along I‘g,

X = Y = walong U2 + V2 = Ai_j/uz,

X=0,0<Y<batV=0 U=A4A

c-j’
0< X<, b<Y<w at the intersection of I‘g and U2 + V2 = Ai_j/uz.

The approach is to assign a value of Ay, let g[/:;(l) = 0; 11/1(2) = DYy, ..., Out
to

ol ) 2 7r(1 H o
determine values of i, that give the I'" curves that intersect these I curves
along X = 0 so that the region is covered with a mesh of I" curves; determine
B+ at each intersection point; and then use an average value of the slopes in
(1) and (2) to obtain the X, Y point at each intersection,

At this point it is necessary to convert the equations for use in the
numerical solution. To do this the characteristic curves are numbered with
the I'" curves designated by k = 1, 2,..., and the I' curves designated by
j=1, 2,... (see Fig. la). To do this, let

N

+ +
‘l/:k =W

, and g = Wj . (16)
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v
u' + v o= (a(v
N = o0
Y -
u
(a)
J ‘\J, K and YJ’ K known
Y5 k+1 - Ypmin K0OWH
Find: ‘\J, K+1
u
7
N /\
K+1
(b)
J+1 SRS RS TSI RS FETE
‘\J, K1’ YJ’ K+1 known
J Find:
Nret, k1 89 Yo ket
K
K+ 1
(¢)

Fig. 1. The problem.
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Since B~ = —B+ at the intersection points, one need only compute B+ and so let
+ — = = =
B = Bj, K then U Uj, K’ A% Vj, K and A Aj, K * (17)
For convenience let
21
R, = 0
R, =—2—=R,/R
4 1 -u 177737
(18)
R5 = R2/R3,
Re = RS/RZ .

Then rewriting (12), (13), (14), (15), (1), and (2):

sin|B. +1

B« —2—( 6 Sm[RSBj,k

+ - 1, + -1
w, - Wj )] - R +5 (W - Wj )} = 0 for a general
B i

_ + +
sin[B; |+ W ]—R sin[R B, +W

585« k]=0foraB.,

i,k along Vj = 0, (19)

k 6 k

sin _Bj, K~

- . 1 -1
WJ.] - R sm[RsBj’k——ZWj} —OforaBj,

oo

6

U.

+ +
" Aesi Ry cos(Bj’k+Wk> - Ry cos(RgB. | +W ] ,

575,k "k

i

. + . +
Vi ARy sm(BL W+ W) - Ry sin <R5Bj, Lt Wk)] ) (20)

2
A%
- 2 2 -1
Ak /[”i‘?“‘]" 0" - 50 ] ()

Then one assigns values to W:; and W, for each k, j, and calculates Bj Kk from

(19) using the Newton-Raphson Method (see appendix 8). Equations (Zb) are
then used to determine Uj, K Vj, K’ and Aj, K at each Bj, ke

In order to determine x = Xj K and y = Yj K2 define
r R4 1 - -
By mtanlo By By ) g Wy # W) (21)
J+§: k =
and R
_— 4 1 ot +
FJ k+_1- = tan T (BJ, k + BJ, k+1) + '2' (Wk + Wk'*'l)} (22)
> 2 -
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and calculate F 1 and F 1 from the given W_li’ Wj— and the calculated

ek kg

Bj K The two compatibility conditions from (1) and (2) may now be written
as’
+
- (Yj+1, K" J’ k) P R = Xj+1, K " Xj, K (along I" ), (23)
it 5
- (Yj, K+l " Yj, SF Xj, Kbl Xj, Kk (along T" ). (24)
Js Kty

To carry out the computation using the known values of %,y the procedure 1s
to first obtain the x value at k = 2 using (24), then obtain x,y values along I“
for each "j" using both (23) and (24). The process is then repeated for each
"k.," Referring to the diagrams in Fig. 1, Fig. lb represents the situation
along the U axis and Fig. lc represents the situation in the U, V plane
generally. The computations in these two cases are the ones used and will

be carried out here as an illustration:

To determine the x value along V = 0 for a given "k'" value, assume

Xj, K Yj, K Yj, K+l YMIN are known; then from (24),
X. = X. - (Y. )F . (25)
j, kt1 Js k s k+1 ~ J, k i k**%
To determine subsequent values of Xj, K+1 and YJ, K+1? X and Y are known at

i, k; j*1, k; and j, k+1 and from (23) and (24):

X, - X. + F Y. - F
+
jtl, k j» k+1 j+1,k+—é— itk J+'§, K+1 J, k+1
Yirg, k+1 - F TTF
jtl, kts  jhs, kit (26)
2 2
and
X. = X, - (Y. -Y. ) F . (27)
jt1l, k+1 jtl, k j+1, k+1 jtl, k i+, k+l

C. Example Problem

As an application of this method, a problem was solved for a typical
explosive utilizing a CDC 3600 high speed computer. The data used was for
PBX 9404 (see ref. 4):
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Chapman-Jouguet pressure = PC . = 0,39 megabar,

Detonation speed D = 0.88 cm/usec,

Density of unburnt explosive = pg = 1.84 g/cm",
Using the relations in appendix 4 the effective y was calculated to be:
Specific heat ratio =y = 2.6535795.

The initial half-thickness of the H. E. was taken as 0.3.
The idea was to assign a value of zero to W; and WI, and a fixed value
AW to be added to Wj to get WjJr1

grid thus generated in the u, v plane was to be used to solve the problem.

+ +
and subtracted from Wk to get Wk+1‘ The

While this gave a rather finely spaced grid in the u, v plane with AW = 1° (or
0.01745 radian), the resulting grid in the x, y plane had a relatively large
space between the detonation front and the first C+ curve, When smaller
values of AW were tried, the gap was seen to close very slowly and it became
obvious that variable grid spaces would be required. Without any attempt to
optimize the system of spacing, 30 C+ curves were inserted between the

T x aw
X AW. From there on the spaces were equal with AWi

original C+ lines and the front ranging in spacing from AWl =5X10°
to AWy4 = 4 X 1072
= 2X 107" XAW. The solution was obtained with AW = 1° so the majority of
the spacing was with 0.2° intervals. Figures 2 and 3 show some representative
F+ and CJr curves respectively.

In considering the accuracy of the method used, the CJr curve nearest
the front is the most important. The initial point on this curve along y = 0 is
determined by extending a straight line from the point x = 0, y = 0.5, Referr-
ing to Fig. 3 it seems obvious that a curve drawn from the point (0., 0.5) to
the x axis without crossing the first CJr curve cannot differ much from a
straight line. By taking smaller value for AWi, the first point on this C+
curve can be placed as near to the front as desired and hence the x,y values
can be made as accurate as desired.

As a check, AW was set to 0,5° giving AW, = (2.5 X 10~

the resulting values of x and y were the same to four significant figures near

7)°, ete., and

y = 0 and to less than 1% everywhere,
Figure 4 shows the pressure in megabars as a function of the distance
from the front expressed in units of the original thickness for various values

of y. Table 1, appendix 11, lists output from which this figure was plotted.
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Figures 5, 6, and 7 show pressure in megabars, velocity in the x
direction relative to the front, and velocity in the y direction as a function of
the distance from the x axis for various distances from the front.

Figure 8 shows constant relative volume contours in the x-y plane.

D. The Program Card Decks

The code name given this program is 2D-STEDET. One basic program
was written in FORTRAN for the CDC 3600 high speed computer, There are
two versions available and they differ only in output and COMMON statements.
Both binary and FORTRAN decks are available along with copies of the
compilations. If the decks are desired, they may be obtained by contacting
Mark Wilkins. ‘

No attempt was made to optimize the program to achieve rapid calcula-
tions or uniform distribution of grid points in the x, y plane. This, of course,
could be done. Anyone desiring to use the program will find the following

comments of interest,

2D-STEDET

The program allows for ay > 2,6535795 and gives as output along each
j and k curve:
P = pressure,
VOL = relative volume,

E = internal energy in units of original volume,
U = velocity in the x direction relative to the front,
V = velocity in the y direction,
B = parameter on " and r,

WPOS = generating parameter for I‘+,

WNEG = generating parameter for I" ,
X = distance from the front, ‘
Y = distance from the centerline of H. E.,

ULB = maximum value of B on each k line. .

In addition there are linear interpolation routines which were put in to get

information needed to show the variations along constant X, Y, and VOL
lines. The first routine prints out P and X for Y=.1, .2, .3, .4. The
second prints out U, V, P, D-U = UPRI, and Y for X =,25, ,50, .75, 1.0,
The third prints out X and Y for VOL. = .8, .9, 1,0, 1,1, 1.2, 1.3, 1.4, 1.5,
1.6, 1.7, 1.8,




-21-

I R +
H ! l
i ‘ ' i
i : : |
8,60 b l-_- JRRSUUS SUN R PR
| i i
3.4 R S R s S -
o
i ! !
3.2 .4.,.-...? .., [RPUR: SN DI e g
i

5.0 e

2.8 e e

2.6 S R R .

2.4 -} -

2.2 — A : : :

2.0

‘4. 10.50

VL0 i fovinaid wovins v

"""--uu
.

e e, 10,78 . .

‘e, .
tle,, »
0.6} .50 T T e et Mot sl Rt Ly . u 5
[RITITITT R PTY TTSYI AU doees i N P A

E-T_-_) AL LTI T YT LXTEYRY ALY T ITYYS ‘e, - .

- WAL (KXTTY PR tra
0.4 R : QAT P i -
— ! M LI caas,

0.2

e TR TR TR s_“'ic_—%_né““s_‘“ui_‘s; Ty K8 € 8 i
- - ~N o~ o~ " " -

o

0.50
4.50
5.00

AX1S

Fig. 5. Pressure as a function of distance from the centerline of the H. E.
for various distances from the front in units of the initial slab thickness, for
an ideal gas equation of state in plane geometry.

vE-i

[~
Y




XVEL-AXIS

~29._

9,6 e m

Y LA G—

Q. Qe n e f e

!
9.0! e

8.8 o} mm

0100000 sy g - =

a6 — —
i 0.50 ) e, *e,
[T ..i -;L...;- = e LTI S - o
,.__....—-—v'—"‘"‘" ., ‘e,
0.15.4°" A
8.0 _ et ]
T , R ,
| .t"". . ’
7.8 ettt . v 3
L eammsemiretes™ -

1.0 . .

7.2 v .

7.0

.
e

6.8

6.6

6.4

6.2 —_— !
E-t 5o =3 ;

Y-AXIS

Fig. 6. Velocity normal to the front as a function of distance from the
centerline of the H. E. for various distances from the front in units of the
initial slab thickness, for an ideal gas equation of state in plane geometry.

6

0.2
x
0.7
0.8
0




-23-
Y ,
i i H
| i
| : |
R T — {
; 47 |
[ . o° i
6.0 ke e - ; o '
] ' .
BBk e b o i .
: , ! '
i . : ' ’
5.0 ! : : |
{ X =0.25¢4 0.50 . 0.75 « 1.0 p
| : :
43 ; :
i . . K
40— - — — i -
5.5 e
5.0 - '.".-'
-I.a' ...
2.5 et
,::..s.
2.0 R '{ - - _‘..-.:-..‘:..'_ .....
| S
.\’0 . L]
‘. ’
NL' . 7} "} ~ © o
c c o o c o o -

Fig. 7. Velocity parallel to the front as a function of distance from the
centerline of the H. E. for various distances from the front in units of the
initial slab thickness, for an ideal gas equation of state in plane geometry.




~24 -

1.0—- Y T T T .

0.9

o

DON N

AN e,

NN e

Y ey .,
s . R
Nt e . .
- . . .,
° . .
0.4 * L s
. T 0 ¥
" ., o B
. . T .
. . . |,
. D . .
' . . ., R ‘e,
. . e
. y . ., o
. '. . . 0.. "-..
0.3 . iy s TR e v,_,_.__.,...
. " ." ",
. . ., .
. .. *e,
. . ey 4
3

0.2 i Y e A_..".'.,«__, . \

0. Vr—monm
0.2 :
0.3
0.5
0.6

8
0.9

0.4
0.7
0

X-AX1S

Fig. 8. Constant relative volume contour curves for the ideal gas
equation of state in plane geometry.




-25-

With AW = DELWS = 0.01745 this takes about 20 minutes to run to

completion.

2D-STEDET W/OOP

The program was set up to run withy > 2,6535795 and AW = 0,008725.
If AW = 0.01745, a smaller ¥y would be possible (see below). This program
differs from 2D-STEDET in that the first set of output (P, VOL, etc.) is
printed out only at WPOS = 0.01745 and WPOS = 0,1745 for each j, and in
additioﬁ to the interpolation, prints out P, D-U, and X for Y = 0.

With AW = 0,008725 this takes about 6 minutes to run to completion.

General Comments

Iﬁ either program if sense switch 1 (SS1) is depressed, the problem
will come off after completion of calculations along a k-line. The on-line
printer will give the k-line number just calculated and the maximum number
of k-lines, and will indicate "PROBLEM FINISHED' after the output data has
been written on the output tape. Everything calculated to that point is printed
out but the problem must be resubmitted if the complete calculation is desired.

The size of the region in the U, V plane is dependent on+y but the grid
spacing is constant or at least dependent on an unrelated input quantity
DELWS. As a result, a change invy results in a change in the number of grid

lines. The number of j-lines is determined as follows:

1
n(5-1)

. u 2 _y -1

Jmax S02%DELWS T 2% K Ty

In 2D-STEDET j . should not exceed 600 and in 2D-STEDET W/OOP j
should not exceed 1200,
If the program were to be used often, it would be advisable to establish

max

a fixed number of grid lines with a grid spacing dependent only onvy. As it is,
if a problem is to be run where jmax is too large, the COMMON statements
in the FORTRAN deck will have to be changed, Care must be taken in this
case since 2D-STEDET W/OOP currently uses about 45,000 words of memory
in the CDC 3600,

To run a problem with one of the binary decks one needs only to put a
#D card in front of the deck followed by a *XEQ card, the binary deck, a
*DATA card, and three input cards. The input cards must be in the F10.7

format and in the following order:
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Card 1:

DELWS, YSTRT = half, thickness of H. E., XSTRT = 0,, WSTRT = 0.,

YM = 0,, ULA = 0,001 " .
Card 2:

GAMMA =+, SPEED = D = detonation velocity, ROE = p, = reference

density of the H. E.
Card 3: v
Ccy! = 0.1, XC1 = 0,25, CVOL1 = 0.8

The three input quantities on Card 3 are used to activate the interpola-
tion routines. CY1 gives P and X for a fixed Y; XC1 gives U, V, P,D-U
= UPRI, and Y for a fixed X, CVOL1 gives X and Y for a fixed VOL. If any
of these is not desired, then the corresponding activation number (CY1, etc.)
should be put on Card 3 as a "0." since the program is set to bypass for that

value.

2D-STEDET W/OOP PLUS PLOT

This program is the same as 2D-STEDET W/OOP except that a plot
routine has been added which will plot the output obtained from the interpola-
tion routine plus every twentieth r" and C+ curve, The I'" curves start with
k = 1 while the C+ curves start with k = 2, The plot routine can be bypassed
completely or the T and C+ curves may be left out in addition to the bypass
already available for the interpolation routines.

To use this program with a binary check an additional card is required

in the 110 format:

Card 4:
IPLOT = IA, IPLOTI1 = IB
If IA = 0 and IB = 0, no plot results.
If IA =1 and IB = 0, CJr and l"+ are not plotted.
If JA=1and IB = 1, CjL and P+ are plotted and the interpolation curves are

calculated and plotted according to the data on Card 3.

i

An example of these plots is shown in Figs. 2-8. .
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II. A PLANE TWO-DIMENSIONAL DETONATION FOR AN
EXPLOSIVE WITH A ”WILKINS"2 EQUATION OF STATE

Introduction

In parts A through D below is presented the solution of a plane two-
dimensional steady-state detonation of an explosive with a "Wilkins-type"
equation of state employing the method of characteristics., Part A gives an
outline of the derivation of the basic equations; part B gives a description of
the numerical method used; part C describes the example problem solved;

and part D gives a description of the program card decks available,

A. Calculation of the Two-Dimensional Steady-State Detonation

for an Explosive Having a "Wilkins' Equation of State

The equation of state used here is that given in ref. 4. The basic equa-
tions of motion are the same as those in section I, part A, Eq. (1). The
difference comes in Eq. (2), section I, part A, which is replaced by (see

appendix 9):

— dp = const. 1
5 do ns (1)

o
8]
+
<
\V]
+
[\V]
mt/§
—
W
N

By definition a2 = 35’ , and from the Wilkins equation of state:
N

(1 +w)C
2.1 [AQ 2 -RV , s 0
a ——po {-\—fm BR V~e -—————Vw . ( )

When (2) is substituted in (1):

(1 +w)C
2. 2.2 AQ 1\ -RV s | .
u® + v+ = +B(V+g)e +——————} = const.  (3)
Po [(Q - vl Vg WY

The constant in (3) can be evaluated at the detonation front where v = 0,

u=a A Vc—j‘ This implies that through (3) the relative volume (V) is

c-j’
a function of u and v and, since a2 = az(V), that a is a function of u and v,
Hence, the hodograph transformation can be made for this set of equations
just as in section I, part A, and in fact all the results through appendix 5 are

unaffected. Hence, we have:
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l“+: v, = tan z//+ u, s
¢ty st —x (4) :
@ tan y @
T vg = tany  u,, .
- -1
C: ypg=—ZX%X5.
R tanz[/+ B

The problem from here is different. The solution for rt and I'” cannot
be found in closed form as in section I, but a numerical integration must be
performed to obtain the values of <//+ and ¢y , the slopes of the tangents of I‘+
and I'” respectively (see appendix 10). Having determined these parameters,
the equations for C+ and C~ can be used to determine x and y. Otherwise,

the solution is very similar to the ideal gas equation of state problem.

B. Numerical Method

Referring again to Fig. lc, the equations (4) of part A, section I, can

be put in difference form as:

| -1
Vit el - Yy, 1001 - TEZ K, kee1 ™ Xy, ket

(1)

-1

= (X

Vg, ket~ Yo,k 0 TET S, kb1 ™ Bjer, i

which, when solved for Xj+1, K+1° Yj+1, K1 yield:

X + TF2Y. - TF1Y

B Xj, k+1 =

i} #+1, k i, k1 1, k
Yir, k1 TF2 - TF1 ; )
Xin, it~ Ker, kT TFL g g Ve, ket )
where
: ) 17 + +
1y,- -
TF2 = tan 5(¥]4y 1o *¥5 i) -

The equations involving u and v are solved in appendix 10 and yield the

following:
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v +
= - S F(V)dV + ¢, ,

(4)

- V —
v = (Emav g,
V:{:
where
_d__2__£
Vv A%
F(v) = 25 (5)

and g, a, a2 are all known functions of V.

In order to begin the solution it is necessary to integrate (4) which is an
improper integral. Using the knowledge gained in section I, it is seen that
the l"+ curve corresponding to the uppermost point on the detonation front
(I‘g) has x//+ =0and V, = Vc—j' At V = Vc—j’ g = 0 and hence care must be
taken with (4). The evaluation procedure consisted of three steps: (1) the
integral was shown to exist for V, =V c-] in appendix 10, (2) an estimate of
1// for a value of V slightly greater than V _. (0.7263 for PBX 9404 and
0,731575 for LX04-01) was obtained by f1x1ng the upper limit and varying the
lower limit toward V c-] as far as pos51b1e and then extrapolating to V -’
(3) and finally, the value of this first (// was arbitrarily varied to give a
positive value of the y-velocity (v) which is required physically. The latter
was possible because the other quantities calculated were not very sensitive
to small changes in the small first value of z//+. The integration was performed
using the subroutine ROMBRG. 0

With this first value of (//+ calculated, arbitrary values of V were
assigned up to V = 10 and (p+ was calculated for each V from (4). Equation
(15), appendix 10, was then used to calculate ¢y for each V. This gives

+
everything on I"

0 since x and y are constant along this curve as shown in

sectlon I.

The value of V, for the next ' curve is found using equation (18),
appendix 10, and calculatlng (//* and (//* from equations (16) and (17), appendix
10. Equation (19), appendix 10, is used to calculate V for succeeding points
on this I‘+ curve, and then equation (15) is used to calculate ¢y . Equations
(13), appendix 10, was used to calculate u and v and equations (14) and (16)
in UCRL-7797 (reproduced below) were used to calculate p and E. With
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values of (p+, Y, a, g ontwo k lines, X and Y can be calculated from (2)

above, The process is then repeated for the next k line.

C .
A -RV S

= + N

p(V) p_a) + BC T
W

p(VIWV  C B(V-%) _grv

E(V) - w - Q,__l - W € 2
wV

where C, A, B, R, CS, w are constants defined in part D below,

C. Example Problem

As an application the same problem was solved as that discussed in
section I. The results are shown in Figs. 9-15,

Figure 9 shows some I“+ curves,

Figure 10 shows some C+ curves.

Figure 11 shows pressure in megabars as a function of the distance
from the front expressed in units of the original thickness for various values
of y. Table 2, appendix 11, lists output from which this figure was plotted.

Figures 12, 13, 14 show pressure in megabars, velocity in the x
direction relative to the front, and velocity in the y direction as a function of
the distance from the x axis for various distances from the front.

Figure 15 shows constant relative volume contours in the x, y plane,

D. The Program Card Decks

The code name given to this program is 2D-STEDET - W/WEOS. One
program was written in FORTRAN for the CDC 3600 high speed computer,
Both binary and FORTRAN decks are available along with copies of the
compilations, If the decks are desired, they may be obtained by contacting
Mark Wilkins. As in the ideal gas equation of state case, no attempt was .
made to '"'tidy up'' the program.

The output available consists of: .

SCJ = Chapman-Jouguet sound speed,

D = constant in equation (3), appendix 10,

V = relative volume,
XVEL = velocity in the x direction relative to the front,
YVEL = velocity in the y direction,
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P = pressure,

E = internal energy in units of the original volume,
PSIP = angle ¢y made by T with v = 0,
PSIN = angle ¢y made by I’ with v = 0,

X = distance from front,

Y = distance from centerline of H. E. ,
UPRI = velocity in the x direction,

U = XVEL.

In addition there is a linear interpolation routine exactly like that des-
cribed for 2D-STEDET W/OOP PLUS PLOT.

To run a problem with one of the binary decks one needs only to put a
*ID card and a *XEQ in front of the. deck, the binary deck, a *DATA card,

and five input cards. These cards are:

Card 1: 5S5F 10,7 format

C, Q R, B, W

The five quantities are the constants a, @, R, B, w that appear as
equation (15) in UCRL-7797.

Card 2: 5F 10.7 format
ROE, CS, VCJ, SPEED, YSTRT
These five quantities are:
Py = ROE = reference density of the H. E. ,
CS = CS = the constant referred to at the top of page 12 in
UCRL-7797,
VCJ = Chapman-Jouguet reference volume,
SPEED

YSTRT

detonation velocity,
half-thickness of the H. E.

I

Card 3: 3F 10,7 format
CY1l = 0.1, XC1 =0.25, CV1 = 0.8

Ca.rd 4. 3I 10 format
ISTRT = IC, IPRT1 = 1ID, IPRT2 = IE
where:
IC = 0 for PBX 9404,
IC =1 for LX-04-01,
ID = 1 yields printout of XVEL, YVEL, P, E, V for each j, k,

1
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ID = 0 yields no printout of XVEL, YVEL, P, E, V,

IE = 1 yields printout of X, Y, V for each j, k,

IE = 0 yields no printout of X, Y, V. .
Card 5: 2I 10 format

IPLOT, IPLOT1 (See explanation for 2D-STEDET W/OOP PLUS PLOT)
This program will run a problem for either PBX 9404 or 1.X-04-01, The data

required for each is:

PBX 9404 1.X-04-01

C = -0.004563 C = -0.0008335
Q = 4.0 Q = 4.0

R = 4.0 R = 4.0

B = 6.572 B = 5,943

W = 0.35 W = 0.4

ROE = 1.84 ROE = 1,865
CS = 0.032 CS = 0.029

VCJ = 0.7262958
SPEED = 0,88
ISTRT = 0

VCJ = 0,7315694
SPEED = 0,848
ISTRT =1
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III. A CYLINDRICAL TWO-DIMENSIONAL DETONATION
FOR AN EXPLOSIVE WITH A "WILKINS"
EQUATION OF STATE

Introduction

In parts A through D below is presented the solution of a cylindrical
two-dimensional steady-state detonation of an explosive with a '""Wilkins"
equation of state employing the solution to the plane problem discussed in
section II to start the solution, and then employing the method of character-
istics for the cylindrical problem from there on. Part A gives an outline of
the derivation of the basic equations governing the motion; part B gives a
description of the numerical method used; part C describes the example

problem solved; and part D describes the program card decks available.

A. Calculation of a Steady-State Detonation in Cylindrical Coordinates

for an Explosive with a ""Wilkins" Equation of State

In considering the cylindrical case it is only necessary to note that
there is no change in the basic derivation given in section II except that the

conservation of mass equation is altered to:

9p ov ou_ v
xTPIy P& Py (1)

coordinate along the axis of the cylinder,

Wt

where X

y
and it is assumed that there is no rotation about the axis., The other con-

coordinate normal to the axis of the cylinder,

servation equations and Bernoulli' s equation remain the same.
Following the same procedure used in section II, the set of equations to

be solved is:

(a2_u2)3u_uvav_uvau+(a2_v2)3v=__a_zz
Ix 7% 3y By v
(2)
ou ., 9v  du ov _
Opxtox 3y 08y°0-

Due to the presence of the term -2 Y 6n the right of (2), the hodograph trans-
formation used in section I will no %’onger yield a set of uncoupled equations
in characteristic velocity space. The derivation of the characteristic e‘qua-
tions in the x, y plane, however, follows the same procedure but this time the

vector
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c-[-2¥ . ®)

With this value of C, a straightforward application of the technique followed

in appendix 2 yields:

2
- + -
_ uv a\/u v a )

. dy
Cl’ dxl
o u - a

along which

du
dx ’

" <uv+a\/u‘2+vz—a2> 9}’_ B 2V
2 2 dx
o u - a

. a
2 2
a ylu —a)!a

C2:

and
ﬂ :uv+a\/u2 + vz—a2 (5)
dx 2

B 112-a

along which

du’ + <uv - a\/u2 + v2 - a2> dvl ~ a2v
dx dax|. .2 2|
dx I8 2 2 dx By’ - a2)

‘B

u’ - a
In addition, the following relations from section Il obtain:
(1 +w)C
%=L [—Q—AQ_I + BRVZe BV 4 2 (6)
Po | v \Y%
(1 +w)C
Pol@-nv LV
and
-RvV_ . (1 +w)C
D=a2 +2 |___AQ +B(V .+l>e ¢y S (8)
¢l Py | (@ - vl c-i R WV
c-j c-]

In order to start the solution, it is assumed that '""near' the front (small
x) the solution is approximately the same as that for the plane case, and

hence, approximate values of u, v, V and therefore p, a, E at specified

values of y on an x line ''near' the front can be obtained from the solution
with 2D-STEDET W/WEOS as described in section II. This assumption

appears reasonable for a sufficiently small x, but no attempt has been made
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to check the assumption or even to vary the value of the "small x," due to
lack of time., The program was written with the latter in mind, and it could
easily be done.

In order to solve equations (4) and (5), use is made of the fact that
along the x axis, y = 0 and v = 0, Since the term v/y occurs in (2), one can-
not simply set y and v to zero in (4) and (5). Taking the limit of the first of

(2) as y and v tend to zero yields:

2, du

av
y Yo tA ey T wye

since v/y is, infact, (v - 0)/(y - 0), and as y tends to zero is, by definition,
ov
dy*

With (9) and the second of (2) in place of (2), the characteristic equations
along y = 0 are: '

. dy _ -Jy2a
Cra| Tz (10}
a u -a
along which
du J2a dv| _ -
—(K +——2—-———2'-d—}z‘ —O(alongy—O),
a u -a !
and
Cdyp - J2a
Co G|, T2 (11)
B u -a
along which
du 2a dvy _ -
?i—i' - s 2&‘ = 0 (along y = 0) .
B u -a B

Equations (4) through (8), (10), and (11) along with the equations for p
and E from part B, section II, constitute the set of equations required for the

solution of the cylindrical steady-state detonation problem.

B. Numerical Method

The numerical procedure is rather straightforward. The idea is to
replace the characteristic equations of part A, section III, with difference
equations, to use values for all the variables along a selected x = constant

line determined from the program described in section II for generating

values on an adjacent curve in the "cylindrical region," and to repeat the

generating process until the problem is finished. To that end define:
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T = in general,
u2 - az
5 (1)
'r- = _—7_2_% ony = 0’
u” - a
[2. 2 2
g uvt g U 2+ vV -2 n general,
u -a
(2)
+ _ \/—Z_a -
T = —r—z on y-= 0,
u -a
a2v
6 = 55 in general,
6=0 ony = 0,

AG = Gi - Gj for i,j = 1,2, or 3 and G = any of the variables x,y, etc.
Then the characteristic equations (4), (5), (10), and (11) in part A, section

III, become:

C™: Ay = 7~ Ax along which Au + 7" Av = 9.;‘.?‘_ ,
(4)
C+3 Ay = ’T+Ax along which'Au + 77 Av = 9%“ .

N

7

Fig. 16. The general situation,

If Fig. 16 represents the general situation in which all values of the
variables concerned are known at points 1 and 3, then the equations (4) can

be written as follows:
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on C : yz—y3=é Z_z(x2 Xg) (5)
I R O U I S (O (6)
2 3 2 2 2 3 272 72 3
+ +
b - e BT (v, - vy) = ey (X, - X) G
2 1 2 2 1 271 72 177
In these equations,
p: P p ry = -
Z =7y * 7] withp = +or -, (9)
P_ P, P .
27 = = -
9 72-+73 with p = + or -, (10)
6 6
6 :_2_4—__:_[_, (11)
1 vy vy
6 8.
P (12)
© Y2 V3

Equations (5)-(8) constitute a set of equations to be solved for the values at 2,
ignoring for the moment the problem of evaluating 7 , 7  and 6 at 2, Solving

(3) and (7) vields:

’I:/‘
il

ant

“
i

where

2(v, = v,)+ =.x, - =N

! 171 273

<
}_
o] =
4
7
N
i
/
o

(13)

(14)

(15)
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and the value of x, from (13) is used in (14). Solving (6) and (8) yields

- +

v. - (16)
2 A2
and

U, = U S o (v —V)+16‘(X - X.) (17)

2 1 2 “2'V2 1 2172 1
where
— + - 8
Ay = Zy-Z (18)

and the values of x, and Yy from (13) and (14) are used in (16) and (17) and
the value of v, from (16) is used in (17). .

In order to start the solution, the values of 7 , 7, and 68 at 2 are set
to zero. The value of the quantities in (9) through (12) are multiplied by 2
and a first estimate for Xos Ygs Voo and u, is determined from (13), (14),
(16), and (17). To get a second estimate it is necessary to determine a value
for a at 2. To determine ay, it is necessary to determine V at 2. To that
end equation (7), part A, section III, is used as follows.

Assume the values of U and vy as calculated in the first estimate are

correct, then one must solve

(1 +w)C
¢(V):u§+vg-D+£—{——~——é—9——Q—_—1+B(V+lR)e~RV+-~T~S— :0. (19)
0 Ll(@-1V wV

This will be solved using the Newton-Raphson method described in appendix

8. If V'is the ith estimate of the V which solves &(V) = 0, then

. [1 N %Qll;_l_)_J . (20)
22 (vl

Eqﬁation (20) is applied until 'Vi - Vi—l‘ < e, where e is an arbitrary small

number set equal to 10—8 in this case. Equation (6), part A, section III, is

used to calculate az(Vi_l).

One is then in a position to calculate values of T, 'T—*._', and 6 at 2.

Having done so, the entire process is repeated to get newv"‘ézstimates of x, v,

u, v, and V at 2. It was decided (for no particular reason) that when two

successive values of Ugy differed by 10—8 or less, then the values of all vari-

ables at 2 were sufficiently accurate.
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If the point 2 is on y = 0, then from (5) and (6):

2y
X = x. -3 (21)
2" %37 -
2
and
N 1 _+ 1 .
Uy = Uz Ty B, Vg g 6ylxy - x3) (22)

where the values of 7, 'r+, 6 for 2 are determined using the expressions in
(1), (2), and (3) ony = 0. If point 1 is ony = 0, then there is no change from
(13) through (18) except in the calculation of T, 7+, and 8 at 1 as indicated
for y = 0.

In the process just described it is obvious that if one has all the vari-
ables determined on some line x = X for N values of y, then the first set of
calculations will give all the variables at N - 1 new points. This will, after
N sets of calculations, reduce the number of new points to 1. However, if
the first point on x_ is used in conjunction with the line y = 0 through (21) and
(22), then a new point is added on the first set of calculations, and on every
other set of calculations thereafter. The result is that new points are reduced
to 1 after 2N - 1 sets of calculations instead of after N - 1 with the last point
being on y = 0. (In the program written the problem terminates after 2N - 2.)
Hence, the area covered by the solution is determined by the number of points
brought forward from the initiating plane solution to the line x = X and to
some extent upon the distribution of these points. In the program as written
no effort was made to select an "ideal" distribution of points on x = X and
in fact, an arbitrary number of points was selected which will vary with the
equation of state in an unknown manner, The distribution of these points is
equally arbitrary. The object of the program was to demonstrate that the
method works. A clever programmer could devise a routine to give a
constant number of points on x = X with an "ideal" distribution. Further,
the value of X, was set equal to 0,05 for no particular reason. This number
(xS) should be determined from experimentation with the program in conjunc-
tion with physical experiments and/or other computer programs such as
HEMP (see ref. 4).
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C. Example Problem

As an application of this method the same problem was solved as that
discussed in section I. The results are shown in Figs. 17-186. -

Figure 17 shows the C~ curves in the part of the problem where the
cylindrical equations were solved. The blank space to the left of the line -
x = 0.05 represents the part of the space where the plane solution was
assumed to hold. The points calculated there were not plotted because it was
felt they would only confuse the figure. It will be noted that the distance be-
tween the characteristic curves near the top of the area becomes quite large
toward the end of the solution area. This distance is probably too great for
the straight line approximations made. However, the addition of several more
points would eliminate this objection. Note also that there is a relatively
large gap between the highest point on the figure and the line y = 0.5 which
later represents the original boundary of the H. E. This gap could be reduced
by the addition of more curves in the solution to the left of x = 0.05. The
curves are shown merely as an illustration of the type of information pro-
duced by the code,

Figure 18 shows the pressure profile in megabars as a function of the
distance from the front expressed in units of the initial thickness of the H. E.
for various values of y as plotted by the plot routine directly on the CRT
(cathode ray tube) by the computer.

Figure 19 shows the same information as Fig. 18, with the points for
the plane solution (x < 0,05) removed, hand-plotted on a different scale for
clarity. Table 3, appendix 11, lists output from which this figure was

plotted.

D. The Program Card Decks

The code name given to this program is CYL-STEDET. One program
was written in FORTRAN for the CDC 3600 high speed computer. Both ,
binary and FORTRAN decks are available along with copies of the compila-
tions. If decks are desired, they may be obtained by contacting Mark
Wilkins.
The output quantities are the same as those listed in part D, section 11,
with the addition of

S = sound speed.
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Fig. 19. Pressure profiles at various distances from the centerline of
the H. E. as a function of distance from the front in units of the initial
thickness, for the Wilkins equation of state in cylindrical geometry.
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The linear interpolation routines are the same as in the two plane cases

(see note below).
To run a problem with the binary deck, follow the instructions given in

part D, section II, with the following change:

CARD 5: 3110 format

IPLOT, IPLOT1, IPLOT?2

IPLOT and IPLOT1 are unchanged from the plane cases.

IPLOT2 = 0 yields no plot of the characteristics in the plane part of the
solution.

IPLOT 2 = 1 yields a plot of the characteristics in the plane part of the
solution.

It is also possible to solve a problem for an ideal gas equation of state

for PBX 9404, The following input data is required to do this:

C = 0.
Q = 4.0
R = 4.0
B = 0.
W = 1.65358
ROE = 1.84

CS = 0.1668537
VCJ = 0.7262958
SPEED = 0.88
ISTRT = 2
When this input was tried, the problem ran to completion, but due to
the fixed selection of curves in the plane part of the solution, the maximum
value of x obtained was 0.258. That was not enough for a useful solution.

The important thing is that this problem ran.

NOTE: Output curves corresponding to Figs. 12-15 are not displayed for
this program because the area covered by the solution obtained was too small
to include more than a few points on x = 0,25, 0.50, 0.75, and 1.0 and almost

no points on the constant volume contours,
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APPENDIX 1
DERIVATION OF THE TWO-DIMENSIONAL, STEADY, IRROTATIONAL,
ISENTROPIC HYDRODYNAMICS EQUATIONS

The general equations governing continuous media are (ref. 6, Ch. 2,

3, 4):
Conservation of Mass
dp B
'gt_ + (pu )’1 - 0:
Conservation of Momentum
i i Dul
v e (P -5r) -0
32 tji,
Conservation of Energy
2 . .
D u S| ij
P m(e +—2—> = pf ui+ (t uj>;i s
Entropy Principle
Dn
PHt 20
where

p = mass density,

= velocity vector,

Sl
il

1
tH = stress tensor,

f = body force vector per unit mass,
€ = internal energy per unit mass,
n = entropy per unit mass,
A,]'j = covariant partial derivative of Al,
—DL—,? = material derivative,

If one considers a nonviscous, nonconducting medium in which u
“fu, v, 01, p=pls,y), p=pley), u=uly, e =elsy, n=ny), =0,
and t% = -pé l‘], then these equations become;
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Conservation of Mass

dlpu)  3pv) _ (1)

ox oy .

Conservation of Momentum

op _ ou ou

“ox  PUBx T PVaye (2)
] ov ov A

———gzpué—erv?;y—, (3)

Conservation of Enérgy
2 2
8 9 J d d
pu5f§<€+92—>+pvé§<€+bz>:‘gg(pu)-g—y(p\f), (4)

Entropy Principle

on on :
pu-g;+pv—8—§?_0, (5)
where
p = hydrostatic pressure,

rectangular coordinates,

X,y

U2£u2+’v2.

The equation of state for an ideal gas is

p P Y n-Ng

= = (———) exp( (see Ref, 2, p. 6 ff) (6)
Py Po v

where o
v = E£ = gas constant, or specific heat ratio,
v

Cp = specific heat at constant pressure,
c, = specific heat at constant volume,

The sound speed is given by

2_8pl
a =
3
SPIn
so that using (6):
2_3p’ _YP
a” =g T 7
P P (7)
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Consider the right-hand side of (4):

I-a—- v l = l” 9p 9p du , Ov I
From (1)

8u+8V: u8p+\78p
ox Ty - ok T py)

and with this relation one can write:

) 0 _ op Op puodp pvop

*[H(pu”vy(p” “{“&*ng‘”p—sg"?a—y‘
- 8 p 9 p\
MRt Vay ) -

Hence, (4) may be written as

(ax“’ayx >°

0 8
Now u?)_i VE_y dS

where S is the arc length along the particle path. Therefore, (4) becomes

€ + l + 5 = constant along the particle path. : (8)

The first law of thermodynamics may be written as
. 1
Td'r] = de + pd 5 (9)
with T = absolute thermodynamic temperature. In terms of derivatives along
the particle path (5) is

dn -
p as = 0,

and if one considers a system in which dn = 0 along the particle path, then (9)

becomes

de = -pd ?1)— along path lines. | (10)
I'rom (8):

dec + udu+ vdv+ % dp + pd % = 0 along path lines, (11)
Using (10) and (11) yields

udu+ vdv = - % dp along path lines. (12)
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Since (12) is valid along path lines, one can also write

du dv _ 1dp
Ua—g'*'v-a—'—b—‘a—s‘. (13)
Remembering that d -y o . \4 0 (13) becomes
ds 9% 9y’
2 8u ou ov 20v _ 1dp
g— —5—§+u~5—— V-5§“-"p—-d—§ (14)
and since along path lines dn = 0, (7) may be written as
2 _0p dp .
a~ = = == along path lines
Tp 0 gp
or, what is the same thing, as
d 2d
E-a 5~ (15)
By using (15), (14) becomes
2 au 2 v _ a2 dp (16)
9y ~ p dS- ,
Now (1) may be written as follows:
Bp ou op ov _dp ou , 9vy _
5..+ -5—+V-8-§+pry—a—s—+p(-5§+—5§ =0
which, solved for %’% yields
- ou
- p H}_{.
Putting this last expression in (16):
2/0u , v\ _ 2 0Ou ou , Ov 2 ov
S m) e G R)
or
0
(a” -uz)?;“--u< + (@ —vz)g—;:O. (17)

If one considers (6) along path lines (du = 0), then

LA

t
p:<p> or o = )
p=p , (18)
Py \Pg 0\Pq
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where po, pg are the values at some 1r11t1a1 point, and using (18) in (7):

7 1
Po pO' pO’
whence
_.Y.l_
Y
p=p 3—2—> where a2 =1?9 (19)
0 a()? 0 Po

Operating on (19):

Y
oYL, o7l o 2
dp = Y a a da” _ v da
PPy -T\72 ) |72 5 "y 1P T3
ag. a ag a

or

%9 = 7—7—-7 9;-2~ . (20)
From (7):
- Ldp = - 2 dp ,
P Yp
and using (20):
_%dp= "7 } lda2 .

Putting this last in (12):

Law?+v% = -

which, when integrated along path lines, yields

(2
u2+v2=— 2a
v -1

+ constant, along path lines. (21)

IFor use elsewhere, note that if v = 3:
2 2 2 . ]
u” + v” +a” = constant, along path lines. (22)

2. az(u2 + v2) so that (17) is an equation

Note, also, that (21) implies that a
in (u, v) as functions of (x, y). In order to use the method of characterlstlcs
here we need another differential equation in (u, v) as functions of (x, y).

To that end, consider the conservation equations for a general hydro-

dynamic material with tY) = - pg and t' = 0. First convert these equations
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from tensor to vector notation by noting Lhat:
oo (™) . =-p . =-
t :i (pé >, i p’ j Vp

and '
(tijUJ)ﬂ -(péijUJ> - —(‘puj);]. = -V (pu) .

2

With these, the conservation equations become:
3

p+pV - u=0, (23)
PLJ + Vp =0, (24)
UZ
PC + p 2 = - (pE); (25)
pn > 0, (26)
whore —‘) - D 9 +u.V for unstead otio
o s T U ne y motion,
ind _—) = J% = ag- syt v for steady motion,
[for steady motion, (23) may be written as
u- VptpV-u=0
or
7.3:_%.3.%0, (27)
Considering the right-hand side of (25),
V- (pw=p7 - u+t(yp)- u,
and using (27),
1
V -+ (pu) = ——gg- Ve tu- VP:PE‘(;VP‘fQ“VP)
or
7 (pu) = pu - (\7 g) . (28)
Using (28) in steady (25):
(29)

2
_ u P\ _
u - -+ 5+ 2) =0,
py v<€ 5 p)
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Now (9) may be written as:

dn _ de d (1 . =u- Ue+u-
Ta—§_8§+p3§(ﬁ) or u- Tyn=u- Ye +u
From (24) for steady motion,

u= - Vu-= -%VP,

and, in general,

P\ - 1 1
+ 2) = + = + =,
V(e+]) Vet g Wrpv;
so that,

2 2 2
us Vet g su v(g) ru V(e rg) s V()

tu- (v€+pv.;_+.;_vp> )

[t

Using (30) in this:

2 2
u” . p) _ u 1
ae V(e 4P mu- gty (Ve teyp) -ue e Py
In general,
2 u

eV 5=2u- (- Pz=u- @ PNu,
so that (32) becomes
u2 p 1
us Pl ) cue (e +py5) -
Using (30) in (33) and recalling (29):

2

~

Since u- TYn=Tu- Jn =T a%'”’ (34) implies:

2
e + %+ L2 = constant and n = constant along path lines,
2 p &

pV

O

2
Al d i
u - 'IVT) =u- v(e +u_2_+.g> :a-§<€ +u7+§) = 0, along path lines.

(30)

(31)

(32)

(33)

(34)

(35)

This is the same result obtained in (8); it was repeated because the vector

equations were needed for what follows,
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Now the expression (u - §)u while in vector notation is a tensor the way
it stands. In order to write it as a vector expression, we revert to tensor

notation for a moment to find that

; a(u,gJ) i .
(u+ V)u=u A S u. . e’ (36)
~ ~ s i~
where
i . :
u = contravariant components of u,
uj = covariant components of u,

el = reciprocal base vector,

Operating on the right-hand side of (36):

wu, L ed = utu, et - v, Led + utu, el = L Vuz
;1= ;37 i~ ji1~ 2
[ulu. .eJ - u']u. Ael]
i3~ i~

- %VUZ - ‘55?) uluﬂ_keJ (see footnote*)
4 2 i kfm j
h _Z—VU - Gjirnu € uﬂ;]{g
kf{m J - . - = e _ im i
Now ¢. uﬂ;kg curl u w = VOr ticity vector, and €jimu woe u A ©

where A = cross product or vector product, hence

:‘:6 l_<i,0 is the generalized Kronecker symbol which has value 1 for j =k, i =4,

and -1 for j=4£, i=Kk.
and eJlk (not to be confused with € for energy ) are related to the

€ jik
ermutation symbols e ek”(‘)m as follows
P Y kg m’
-
= 1 when kfm is an even and - e. (B
permutation of 123 €iik ~ €jik V8
eM m e, = -1 when k#m is an odd jik _ eJlk
f m o o € =
permutation of 123 ? Jg
= 0 otherwise where g = determinant of
N y the metric tensor,
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i jilg 2 1.2
uuj;ig A AR EVu u Acurlu.

Therefore, (36) becomes

(E . V)E = %vuz -u A curl u, (37)
From (30)
1
= + -, (38)
Tyn = Ve + Py

From (31) and (38)

%Vuz - uAcurlu= -%Vp,

hence
V(e + ) Vet py5+ 5T
and
1 2 ] Dy 1
5Vu” - uAcurlu+ V<€ +5) = Je + pv_ﬁ = T¥n
or
T™Vn = V(c +———+ -uhcurlu. (39)

From (39) it is easily seen that if {n = 0 everywhere and curl u = 0,

then

v< + p) 0 everywhere
or

c + %_ + % = constant, throughout the material.

2
Therefore, for an isentropic, irrotational, steady processe +u /2 + p/p
= constant everywhere and the relations (8) through (22) are seen to hold
everywherc instead of just along path lines with the additional requirement

on the (u, v)'s that

—(UIlu——g}l %X‘O (40)

Itquations (17) and (40) are seen to be the desired pair of equations.
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APPENDIX 2
DERIVATION OF THE CHARACTERISTIC EQUATIONS ™

The set of two differential equations to be solved in this instance are:
2, 0v

)-8-37-:0, «
(1)

( 2 2) ou ov ou n <aZ -
a -u 'a-i;—uv-asz—uv-gs;

ou ., 0v du av _
03’2+’é§"5§+ OW— 0.
In general, a set of first-order partial differential equations in two independent

variables may be written as

L[U] =C - (2)

~ ~

where

£
i
i

= AU_+ BU_,
~ X ~y

e
o
il

matrices,

C = vector,

U = vector representing the dependent variables,
oU
Ui=a1-

It is readily seen that to write (1) in the form of (2), one defines

U= [uv],
ra‘2—u2 -u
A= Vi,
0 1
-uv a2—v2
B = ,
—._l 0 -
C=[0 0] .

In this case (2) is of the form
ALJX + Byy =0, (3)

which may be written as
T -1 -
Uy tA 7 BU =0 (4)

~

“The treatment here follows closely that in Ch. 5 of ref. 7.
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provided |A]| # 0, where

1

|A| determinant of A,

-1 inverse of A.

il

A
Suppose it is given that U has some known value on a curve
C[ ¢ (x,y) = 0] along which the inner (or tangential) derivative (see ref. 7, pp.

132-133) of U is also known. In that case, the outward normal to C is given

by
T Lt uyd | (5)

and the unit normal vector is given by

8o ., 86 . |
neDis By it (52 > +(52 )% (6)

Jef ooy

The derivative of a function F along a curve with S the arc length is

given by

<-gfl+-a—-]> S : (7)

where S is the unit tangent vector, If S = [Sl’ 82] and n = [nl, nz], it is well

known that

S1 = -n, and n, = 82;
th fore if let 9% . ol tc. th
erefore if we let 5= ;> ete. en

—

5° fTrez [- oy 0]

so that (7) becomes

) Fx¢y + Fy¢x . ®)

Since we are assuming the inner derivative of U is known on C, (8) can be

used to express the inner derivative of U assuming d>3 + ¢0 # 0:

- de)y yyq)x = known quantities, (9)
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and since ¢(x, y) is known, d:x and d)y are known, so define .

(10)

93

il

]
i

and using (10) in (9). and solving for LIX,

U, =-1 Uy + (known quantities), and substituting (11) in (5), (11)

-TU_+ A_lByy + (known gquantities) = 0, (12)

In order to determine Uy from this expression, the determinant Q of the co-

efficients of Uy must satisfy

Q = 'A_IB - 'rIl # 0, where I = identity matrix,
If, on the other hand, Q = 0, the curve C is called characteristic and the
characteristic condition is

Q=la"'B - 71] - 0. (13)

The system is classified as hyperbolic if (13) has two distinct real roots. In

that case a solution by the use of characteristics is possible. Using (3):

IAI = a2 - u2,
1 . uv
2 2 2 2

A—l _{ a -u a“ -u i a2 f u2, : (14)
0 1
-2uv a -v

1 ‘ 2
A lp :[ a”-u a”-u
-1 0

Putting (14) in (13):

2 2 2 2
a’-u a -u

'
Q= || —T{L = 0. (15)

T

!':—Zuv a2-—V2

The characteristié condition (15) is solved as follows:
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-2uv o a2—v2
az—u2 a2-u2 9 ouv a2 _ V2
. Q= FT ey T 5 = 0,
1 . a” - u a” -
. 2 2 2
- - U ¥ avu +v -a
1, 2 2 2
u - a

From (16) it is clear that there are two distinct real roots if
u2 + V2 - az >0.
IfIA—lB - 7I|= 0, then there exists a vector £ such that
-1 _ -1
~£A B—£71=0 or gA B=47I.
Letting ga correspond to T (¢ = 1, 2), (18) may be written as

EC.P(A—IB).. = 9% 5. = 2%
i ij i'a’ij i«

from which one must find £%. Expanding (19) and solving:
o -1 afa-1 _
5 [(A B),, - 7a}+ 8 @aB),, = o,

f(1y(A-1B>1:2 * ﬁgKAJB)zz - Ta] =0,

P _(A—1B>21 09 op 4% = (A_1B>22 “To a

, O L5 .
] [(A‘IB>11"TQ] i : (A—lB>12 ’

Using (14) and (16) in the second of (20):

1,2
. Sz T2 wra®av® oa® o
1 3 2 > 2 2
a - v a -V
72
a - u

Now, operate on (5) with ga and make use of (18):

29U+ 0%aiB). Ul = 0%ul v 4% 5 U)

17x i ij7y i x 1 oijy
=2%ul+2%r ul=0.

i°x iay

(16)

17)

(18)

(19)

(20)

(21)
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This last may be written as

o

i 0 0
U = = +
ﬂiDa 0, where Da/ 2t 7o Ty (22)

the derivative along the 2% direction.

Using (21) in (22):

2 2 2
uv - a\/u 2+ v -@a DlUl + D1U2 = 0 along 1, (23)
a” - v
and e
2 2 2
uv + a/u +2V - a D2U1 + D2U2 = 0 along 2.

2
a~ -v
In order to determine the curve C, think of ¢(x,y) = 0 solved for

y = y(x), and since

8¢ . L0
do = 57 dx + 57 dy = 0,
(24)
dy - X L1 [see (10)]
dx - a—}—’ Lsee

Using (16), (24), and (23) one can then write the differential equations for the
characteristic curves and the compatibility equations which must be satisfied

along them as:

C - dy _ . :uv+a-/u2+V2-a2
2" dx 2 2 2
u” - a
along which
_uv t a\u2 + V2 - a2 du _ dv (25)
2 2 dx dx,
v - a 2 2
and
c-9l=+7 -le—a\/u +v—a2
1" dx 1 2 2
u - a
along which
uv - a/u2 + V2 - a2 du dv

2.2 dx;  dx,




APPENDIX 3
DERIVATION OF THE CHARACTERISTIC EQUATIONS
IN THE HODOGRAPH PLANE™

The set of partial differential equations

(2 2)8u ov 8u+(2 2)8V:0
a =-u —a—i—uV'a—)—(—UV-s'? a -V -53"‘ )
(1)
du , 9v  0Ou ov _
Opstax oy " 0oy~ O

is a set of equations to be solved for u = u(x,y) and v = v(x,y). Since there
are two dependent and two independent variables it is possible to transform

(1) into a set which is to be solved for x = x(u, v) and y = y(u, v). To that end,

we write:

du=%§dx+g—;dy,

(2)

_ov ., 0v
dV“g‘;{‘d)&_'-'a?dy,

and consider (2) as a set of equations to be solved for dx and dy. Hence

ou
du Iy
id" ’3”; 1 8v 1 du
dx = 7 =jg-}7du-—j—8—§dv,
3)
du (
-6—_{ du
ov dv
_10x 1 8v 1 du
dy = ——-j—~——jva§du+j-5—)—cdv,

where
_Oudv 0Oudv 0
ox 8y " dyax’ O
By considering x = x(u, v) and y = y(u, v), one can also write

0x 9x

dx = +— du + == dv
ou ov ?

(4)
dy:g—%dqug%dv.

“This treatment also follows ref. 7.
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Equating like terms in (3) and (4) and assuming J # 0:

8X _ov 7 _du . .
I35~ vy o "oy
(5)
7 oy ov _ du

Ju T oxe :9— T %
Putting (5) in (1) and rearranging terms:

2 2, 0x oy 0x 2 2, 0y

(a —v)§—+uvg—+uv3—+(a "u)’JV:

(6)
ox 0y , 0x dy _
O3 - 8u48v}0_3v 0.

Equations (6) can now be treated just as (1) was treated in appendix 2, Let

Z =[xy,
80
O, = 57,
2 2 -
a -V uv
AE{ J (7)
0 -1
2 2
uv a - u
B = [ },
1 0o .

and (6) becomes

AZ +BZ =0. (8)
~ U ~V

Equation (8) can be solved for Z, which yields

7z +A'BZ =0 (9)
~'u ~'v
where
2 2
2uv a~ -u
-1 a2 - V2 a2 - V21 2 2
AT'B = | iflal =v® -a® o0, 4 (10)
L 0

The characteristic condition is:

2 2
2uv__7 a -u
1 2 2 2 2 2 2
:,A_B—'TI’: a® - v a®-vo | _ .2 _ _2uv _ ., a" -u’_g4
2 2 2 2

-1 -T (11)
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which has roots

_uv t a\/u2 + v2 - a2 (12)
71,2 2 2 :
a -v

This system is therefore hyperbolic if

u2+v2—a2>0. (13)

The null vectors £a are then found to be:

1,2 uviavu2+v2—a2 1,2

ﬁl = - D) 5 22’ . (14)

a -~ u

Using {a in (9), the compatibility equations are:

uv+avu2+v2 -a2 D
2 2 1
u - a

= Dly,
(15)
uv - aVu + V _
( u2 2 >D X = D2y.

If the characteristic curves in the u, v plane are designated by I", then:

(uv + a\/u2 + v2 - a2>
2 2
v -a

dv _ _
F,-aa—’T—'—

along which

uv+a/u2 - v2 - a2 dx _ dy (16)
2 2 du du, ’
u - a 1 1
and
I,_dv:,r:_uv—a\/u2+v2—a2
2 du 2 2 2

along which

A comparison of equations (16) above and (25) in appendix 2 reveals the rela-
tion between the characteristic curves in the x, y plane and the u, v plane. I"
curves in the u, v plane are compatibility conditions in the x, y plane and C

curves in the x,y plane are compatibility conditions in the u, v plane.




-68-

APPENDIX 4
CONDITIONS AT THE DETONATION FRONT

Consider a detonation front traveling in the -x direction through a
rectangular slab of material whose z and x dimensions are infinite, Let D be
the speed with which the front moves., To consider this as a steady state
problem, the detonation front is brought to rest and assumed to be located at

x = 0. The following diagrams may prove helpful in visualizing the process:

Free surface

Burnt material

Unburnt material

D

1

pOJ po: IJO p) p: u'
77 7 7 77 77777777777
Stone wall

Fig. 20

The transformation -u' + D is made to bring the front to rest and
(x' - th) is made to put the front at the x = 0 position. Since the slab is
infinite in the x direction this last does not really play a part. The diagram

now becomes:

y
FFree surface
Unburnt material —;%—u_rr_;‘; ;agxtal— -
Pgs P Yo = O P, P, u
X

77 777 7777 777/ 77707

Fig, 21
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At the front now the particle velocity of burnt material is u = D - u' in the x
direction, v = 0 in the y direction, where u is positive if it is in the positive
x direction and v is positive if it is in the positive y direction.

The problem considered in this paper deals with the material behind the
front (burnt material) and this latter coordinate system is the one used. In
that case the velocity u is the velocity in the x' direction relative to the detona-
tion front so that at x = 0, u = a._ where ac-j is the sound speed at the detona-
tion front as determined by the Chapman-Jouguet hypothesis (see ref. 2, p.
212).

In order to determine a__. and, therefore, u at x = 0 consider Fig. 20
above in conjunction with the Rankine-Hugoniot equations, with the detona-

tion speed D in place of the shock speed (see ref. 1, p. 3), that hold at the

front:
(ur - Ub)p
D= T‘ﬁ""— s (1)
0
P - Py = ppDU - up). (2)

2 'Yp. (3)

The statement u = a(‘_j is equivalent to the Chapman-Jouguet hypothesis that

holds at the front and may be written as

a_ .+u =D, (4)

By considering the unburnt material to be at rest with Pg << p, equations
(1) and (2) become:

D=L 5)

p = pyhDut . 6)
From (5) solve for

Po D - o

e D
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From (4) solve for

a .=D-u.
Cc-J

Using (3) in this last expression:

Putting (6) in this expression:

yp,Du'

which may be solved for

p _un)?
0.D-u) (8)

P v Du!

Combining (7) and (8) yields

D -u' :(D-u')z
D +Du!

which becomes

D-ut

yao o

If now this expression is solved for,

at =D (9)

and u' is substituted from (9) into (8), ac~j may be written in terms of D as

- -
T v | (10)

Hence, the boundary conditions at the detonation front are

= = =

u ac-j Y+1Datx 0 (11)
and

v=0atx=0,

Ify = 3, (11) is seen to be

u-=a .=§Datx=0,
c-j 4

0atx-=0,

(12)

<
[}
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APPENDIX 5
GENERAL RELATIONS BETWEEN THE CHARACTERISTIC CURVES
IN THE x,y PLANE AND THOSE IN THE u, v PLANE "

Introducing parameters o,  along characteristic curves CjL and C~
respectively, the characteristic equations (25), appendix 2, and (16), appendix

3, may be written as:

+ + +
C:y:<uv au v >
o
Iﬁ+ _ uv+au2+v2—a2
Ve T T 2 2 Yo
@ ve - a
2 2 2
,,C—:y:le—au +V—a>X
| B 2.2 B

- VB:_CAV—aVu +v >B’

(1)

T

v

where A = g—é, etc.
o do

Using (1), one can form

U X,V Y, = U X 1_uv+a\/u‘2+v2—a2 uv—aVu2+V2—aZ]
o BB o’ B o B V2—a2 u2-a2 |
a B u2v2 - azu2 - a2v2 + a
or
Yo B
va XB
which may be written
du 1 p
3\7' - dx)l (2)
o ==
dy 8

From (2) one concludes that if rt and C  are plotted in the same co-

. + . . -
ordinate system, thenI' is perpendicular to C .

“The discussion here follows closely that in ref. 2, p., 259 ff.
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Using (1), one can also form

uX+Vy:UX[l—uv—amuv+a/u2+v2—a2
Ba Ba BQ’ V2—8.2 u2__a2
:0’

so that one can write
du\ _ 1
<HV>B e )
dy. o
From (3), one concludes that if I’ and C+ are plotted in the same co-

-, . +
ordinate system, then I' is perpendicular to C .

Consider a point x,y in the x,y plane., The flow direction 6 is given by

(4)

tan 9 =

cl<

.+_
Let the angle between the flow direction at x, y and the tangent to the C curve

at x, y be A, and the angle between the horizontal and the tangent to the C+

+
curve be ¢ , then

6" = 0+ A (see Fig. 22), (5)

whence

+ _ tan § +tan A
tan ¢ —tan(9+A)—1_tan9tanA. (6)

Let the angle between the flow direction at x, y and the tangent to the C  curve

at x, y be B, and the angle between the horizontal and the tangent to the ol

curve be ¢, then
¢ = 6 - B (see Fig. 22), (7)

whence

tan 8 - tan B (8)
] +tan 6 tan B °

tan &~ = tan(f - B) =
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<

Fig, 22

From equation (1) above it is clear that

D)
¢ +,ya_uv+a\/u2+vz~a“
an ¢ = o= = 53
o u- - a
and (9)
tan &~ = yB _uv - a\/u2 + v2 - 32
an ;}- 5 5
3 u- - a

From a comparison of (9) with equations (15) and (16) in appendix 2:

2

oo

2 .+ r + -V
tan" ¢ + 221“ 5 tan & + 3—2——\-?? = 0,
a” -u a” - u
and (10)
2.,- 2uv - a” -v7 _
tan” ¢ + S5 tan & + 55 ° 0.
a~ - u” a” - u
Using (6) in (10.a),
: %)
2 2 (tan 8 +-tan A \° 5 tan 8 + tan A 2 2
- — 22UV -+ - 7 =
a u’) \l - tan 8 tan A/) YT - tan § tan A a v 0.

Clearing fractions and squaring:
2 2 2 2 2 2 2 2 2 2
a“tan" @8 +2a"tanftan A - a” tan"A - u” tan™d - 2u” tan B tan A - u” tan"A

. . 2 2 2
+ 2uvtan 8 + 2uvtan A - 2uvtan 8 tan A - 2uvtan 8 tan"A + a

2

)
- 2a2 tan 6 tan A + 32 tan29 tanzA - v+ 2v7 tan 6 tan A - v2 tan26 tan2A =0,
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Using (4) in the above after eliminating the terms whose sum is zero:

2
32 12_ + a2 'tan2A - v2 - 2uv tan A - u2 tanzA + 2v2 + 2uv tan A

u -

3 2 3 4 9

~2Y tanaA - 2V2 tan2A+a2+a2Ltan2A —v2+2Y——tanA - Y _tan®A = 0,
u 2 u ;2_

u

from which

2 4
2 2v 2,0\ _ ... 2 2 2 v
(a + a 1—12— (1 +tan”A) = tan AQ; - 2v |u_2>

Solving this last for :12:

2 _ tan2A u2 + 2V2 + V4/L12 - tanzA u4 + 2112\72 + V4
a - 5 2, 2 ) 2 5. 2 ’
1 +tan"A 1 +v7/u sec”A uw v
and letting q2 = u2 + V2,
al = q2 sinzA . (11)

Using (4) and (8) in (10.b) by a similar calculation:

32 = q2 SinzB . (12)
Now at the point (x,y), a and q have some fixed value so that except

where a2 = u2, u=0orl i%tanA = 0,
A = B. (13)

Hence, with the exceptions noted, the flow direction bisects the angle
between C' and C~ and since C is perpendicular to '~ and C  is perpendicular
to I‘+, the flow direction bisects the angle between I'” and I‘+.

ILet the angle between the flow direction and the " curve at the point
(u, v) in the u, v plane corresponding to the point (x, y) in the (x,y) plane be
A', and the angle between the horizontal and the tangent to the " curve be

+
v , then

L -

Y= 0+ A
or

tan 1//+ _ tan 6 + tan A ] (14)

1 - tan 6 tan At
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From equation (1)

/ 2 2 2
tanxp+=—(—y—=— uv + avu + v - a ) (15)
u V.‘2 2

- a

<

Q

and comparing (15) with equations (11) and (12), appendix 3,

2 2
tan2¢+ S 2W _tan g[/+ + iz,—;—ll—z— = 0. (16)

2 2
a -v a -v

Using (14) and (4) in (16) and solving for a2:

2 4
a2 (1 + X'?,’) 1+ tanzA') = u2 + 2v2 + 22—
u u
or
a2 = q2 cosZA! (17)

(which is another proof that I" curves are normal to C curves). Comparing

(17) and (11),

Al =-’21-A, (18)

and one concludes that the component of flow normal to a C curve is equal to

the sound speed and the component of flow tangent to a I" curve is equal to the

sound speed.
From (2), (3), (9), (14), and (15) it is clear that (1) can be written as

+ +
I': v =tan u
o v o’

C+: y = L« ,
o -
tan ¢ (19)

r . VBZtanzp— ug

- -1
DY, T X,
R tan z[/+ B
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APPENDIX 6
ANALYTIC SOLUTION FOR CHARACTERISTICS
IN THE HODOGRAPH PLANE

To obtain the solution for I' curves in the u, v plane, start with equa-

tions (15) and (17) from appendix 5:

Along rt. g—g— = tan 1//+. (1)
At (u, v): a2 = q2 cos® A, (2)

Again referring to appendix 5:

y oA =0 - AT, (3)

From (1):
0. (4)

1

+
du sin (//+ - dv cos ¢

From (2) since a > 0, g > 0 and |A!| 5%

a = q cos A', (5)
From (3):
+
At =y -0,
whence
+ + L+ \
cos A' = cos y -6)=cosy cos 0+ sinyg sinf. (6)

. v
Since tan 6 = e

sin 6 = 3 oS 0 = %, where q = VACIR (7)

v

Using (6) and (7) in (5):
a = v sin ¢/+ + u cos zp+. (8)

In appendix 5 it is shown that a (z sound speed) is the velocity along r
curves, and to find the velocity g normal to the I" curves note that the flow
velocity q is given by

q=uitvj, (9)
where i and j are unit vectors along u and v respectively, and that the unit

~

+
vector along I is

“This discussion follows ref. 2, p. 264 ff.
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.+-
11=icos¢++jsinz// . (10)
. . +
Since a is the component of q along I" ,

+ .+
a=gq.n=ucosy +vsiny

Lo

which checks with (8). To find the normal component of q, one takes the

+
inner product of g with v, the unit normal toT" . To find v, note that

dn
v =——=-isiny’ +jcosy’, (11)
V@
whence
+ .+
g=q*v=vcosy -usiny. (12)

Next, solve (8) and (12) for u and v in terms of a and g:

i

+ .
a=ucosy tvsiny ,

.+ +
g=-usiny tvcosy .

The determinant of coefficients, D, is

+ .+
cos ¢ sin ¢
D =

.t +
-sin y cos ¢

whence
.+
a sin ¢ " +
u = +| =acosy -gsinyg, (13)
g cos Y

+
cos ¢ a
= g cos ¢+ + a sin ¢+. (14)

.+
-sin Y g
The solution, then, is obtained by considering (1/+ as the variable along

" and determining a and g as functions of (//+.
Using (13) and (14):

(—iu—+:—asinz//++a+cos¢/+—gcos¢+—g+sin¢/+,
dy W

(15)
—qy¢=-gsinw++g +cos¢/++acosl//++a +sin§[/+.

dy v v
Dividing (4) by dy":
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+ +
Ehﬁ; siny - 11¥; cosy =0,
dy dy
which upon substitution from (15) yields )
- + .2+
—asin2w++a+sinxp+cos(//k—gsinz// cos¢+—g+sm2g{/ y
' Y
o+ + 2 + 2 + .+ +
tgsinyg cosy -g _cosy -acos Y -a  sinyg cosy =0
¥
or
+ + + .2+
- a,(sinzw + cos2¢ )-g +(coszw +~51n2w ) =0,
whence
g + = -a. (16)
Using equation (21) from appendix 1 and equation (11) from appendix 4:
2. 2 2_ 2 2. 2_ 2 (2 2 _y *t1.2
y—la +u +v —7_1a +q 7_——1(ac-j)+(ac-j)+0 7————_1ac_j
or
2
2a” _«y * 1a2 2
o1y T 1% 4
dif weletp? =Y=1 tn
and 11 we let u Tr, en
2 2
22 fej o 2 . Feeil 2, 227 an
v -1 ;FT’ _;7— v -1°

Since a and g are orthogonal components of q,
q2 - a2 + gZ’ (18)

so that using (18) in (17) yields

2 . 9 2 2
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Differentiating (19):

v_ - 28 g . (20)
7 ¥

Putting (16) in (20):

- 2
-aa T -pga

v

or

2
a _ =pg. (21)
v
Then the problem is reduced to solving (16) and (21). In addition, note

the boundary condition from (19):

g=0whena=a_ ;. (22)

Operating on (16),

2
d”g da _
+ = 0,

awH?  ay

and using (21),

d 2
EytuTe=o,
d@ )
whence
+
g =Esinu( - (//+) where E and w+ are constants. - (23)

Using (23) in (21),

da 2., . + +
+ = M h" Slnu(l// - ED*)’
dy
whence
+ + )
a = -u E cos M(l// - (p*) + F, where F is a constant, (24)

Using the condition (22) in (23)
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- +
0 =g=Esin (1//:; - w;), where (pg is the value of y at a = ac—j .

This condition is satisfied if
+ +
Vo = Vs s

and using this in (24), assuming F = 0,

a

- - . _C-]
a .= -ulE or L=~ ,
c-j H m
whence
a_ .
+ + - . + +
a = ac_j cos u(lp - (//*) and g = - lj J smu(w - zp*). (25)

Physically a > 0, so that

+ -+ T
- - K o,
lw wl - 2u
+
It is shown in appendix 5 that 6 bisects the angle between the I'  and the

'~ curves so that we can write the equations for I'” that correspond to (1),

(2), and (3) as:

— dv -
Along I'": = =tany . (26)
At (u, v): a2 = q2 cosgA' s (27)
woo= 06 - A (28)
From (26):
du siny~ - dv cosy = 0. (29)
From (27),
a = qcos A", (30)
From (28),
A =0 -y, (31)
and from (31),
cos A = cos(@ -y ) = cos O cosy + sin 0 siny . (32) -

Now by inspection it is seen that (29), (30), and (32) are the same as (4), (5),

+ _ -
and (6) withy replaced byy . Hence, the equations for the I'  curves are

»
"

a_ .
ac—j cos u(z// - 1[/*) and g = - ; J sinu(z// - (//*) (33)
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with

From (12) and (3), along F+:

g = VCOS(//+ -u sinz//+ = v cos(f + A') - usin(f + A')

= v cos 6 cos A' - vsin 8 sin A" - usin 6 cos A' - u cos 0 sin A'.,
Using (7):
2 . 2 2
g =W os A - sinAr - ceos A - Y sinAr = - L ginAr,
q q q q q
But A' = ,er' - A (see equation (18), appendix 5), whence
g = -q sin(% - A> = -q cos A, along I‘+. (34)

From the dual of (12) for ¢y~ and (28), along I"":

g=vcosy -vsinyg =vcos(@ - A" - usin(6 - A")

= v cos 8 cos A' + v sin A sin A' - u sin 68 cos A' + u cos 6 -sin A',
Using (7):
uv V2 uv u2
g = — cos A' + — sin A' - — cos A' + — sin A!
q q q a

but A' = 7/2 - A, whence
- . _ . T B -
g =qsinA' =g sm(—z- - A) = qcos A, along I" . (35)
From (34) and (35), since |A|< 7/2, one concludes

g < 0 for I“+, and g > 0 for I curves, (36)

Using (36) in (33) and (25):
' >ul end ¥ <y} (37)

Let ) be the variable along either I" curve, then using (13) the solution for I

curves is given by:
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= cosuly -y,) cosy + 1 sinul -y,) siny,
C_j 0 u f
(38)

= cos uly - ) sing - L sinul - ¥, cosy.

c-j

In order to see what the equations look like, proceed as follows:

= cos uly - ,) cos Y+ T sinul) - ) siny

c-]
= (-2%+ é—) cosy cos uly -¥,)+ <§i—c+ %) siny sinu@ - ¢,)
- <§1ﬁ - %) cos iy cos uly - <2 —9 siny sinuby - l[/*)
(1 + 1/ Cosl—w -ul -y, )] - l/i - 1) cos[w tuly -y, >]
or
a_L - %(Q—_‘Jr 1) . {(l’u -1 - ) +¢,*] (—~ - 1) cos [((// YL+ )+, ]
c-1 (39)
Now let
q = %(,}7 = 1) e “0)
then
YED) e =50 e, jTatag . (41)

Using (40) and (41) in (39):
W= (g + @ cos [(L -l - p) +y, | - Gcos [ vmu -uy +y, J-

(42)
From (40):
a . -
u:______.g.;']_ andl_uz__:,z_g__.__’ (43)
2q+aC_J 2q + a
and
2q +2a . - q+a_ . q+a_ .
L+ = — CJ:<'2q >< ‘C_J>:(1‘M)_--_C_J- (44)
29 +a . 2qg + a q q
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Using (43) and (44), (42) becomes:

_ ) a._: + q
u = (aC—j + q) cos [(] - u)(l[/ - w*) +¢/>{:} - q cos [(1 = u) _‘f]"_“(‘ﬁ - (//*) +l//>k] .

q
(45)
Let
B=(-w -y, | (46)
then (45) becomes
) a, .+ q '
u=(a_.+q cos(B+y,) -qcos {-———J—-—— B+ 1//*} . (47)
- 3 3 :
Similarly one finds that
_ a .+gq
= (ac—j +q) sin( +¢,) - q sin —-—9;_3-—-——[3 R 200 (48)
L g d '

Equations (47) and (48) are the parametric equations for an epicycloid
generated by a circle of radius g rolling on a circle of radius ac—j (see

appendix 7).

Now let
A2 ai-' A fe-j
q” = —-—-12—l and hence, q = R (49)
U
then from (17):
2, 222 _ A2 (50)
gt
and
a_ .
A _ i _ (1. > - 25
d-eey it (i Genj T2 Gy

From (51) it is seen that the circle of radius q also rolls on the inside

of the circle of radius a On the circle u2 + v2 = ai_j, the speed (q) is the

" 1

Chapman-Jouguet sound speed, hence this circle is called the "sonic circle.'

One then can say that equations (47) and (48) are epicycloids generag:ed by a
circle rolling between the sonic circle and the circle of radius /0\1 = :—J .

Note also that from (50), when q = a, a = 0 and conversely, This
indicates that the circle q2 = 82 is the locus of points (x, y) where there is no

material or where the pressure is zero (see equation (19), appendix 1).
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To investigate the mapping of X,y points to u, v points nondimensionalize

(47) and (48) be letting

A
5 (52)

and
-1 (_53)

so that substituting from (40), (41), and (44) into (47) and (48),

Ry
R, cos (,8 + l/j*) - R3 cOos ('R—‘B + lp*>,
3 g

6 = 9
(54)
Ry
A =R, sin B +yy) - Rg sin(—R—gB + z//*>.
Using (43) and (46),
B= (- -y
or
g =B 55
':0 d/* 1 - u' ( )
1/2
. B Y - 1 +
From (37) one concludes, since 1 -u =1 —<'Y - 1) > 0, that I" curves are

generated by > 0, and '~ curves are generated by 8 < 0.
In other words, I' curves are generated by rolling the circle of radius

g counterclockwise around the "gonic" circle, while I'” curves are generated

1"

by clockwise rotation. f is the angle subtended at the center of the "sonic"

circle by the center of the circle of radius g as it rolls from its initial posi-
tion to its current position, andy, is the angle subtended at the center of the
"sonic! circle between the radius vector to the center of the circle of radius
q at its initial position and the positive u axis (see appendix 7).

From (33) and (25),

o] <5

and from (55),

1
= 18l < 5
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whence

and fory = 3, u = (2/4) /2 = 1/\/5 so that X é“ =\/2__ L or
2v2

IBI < Eﬁ[%;;ll.z 37.26°.

Suppose one considers the semi-infinite slab of H. E. (shown by the

dotted line in Fig. 23a before detonation) in the x, y plane, In appendix 4 it is

shown that along the detonation front (x=0), v=x=0andu = ac_. = by 1 1D

or 6§ = 2. Hence, the entire line [1]-[4] in the x, y plane is mapped to the
point & = 2, X = 0 in the §, A plane (see Figs. 23a and b). From (54) this

corresponds to 8 = 0, y, = 0. Alongy =0, v=2a=0so that the x axis is
mapped to the u axis between the '"sonic'" circle and the circle of radius q
Along the line [4]-[5], p = a = 0, and as stated above all points where a = 0
are mapped to the circle q2 = 32. Since there must be contact between the
lines [4] -[5] and [4]-[1], the point [4] in the x, y plane is a singular point and
is mapped to the Fg curve that runs between the ""sonic'" circle and the circle
of radius afrom the point 6 = 2, X = 0.

To see that [4] -[5] is indeed a straight line in the x, y plane, note that
(37) implies that the I“+ and I’ curves are generated by rolling the generating
circle counterclockwise and clockwise, respectively, so that the I' curves at
the point [4, 5] in the u, v plane are both tangent to the circle q2 = az there,
Since the flow direction g bisects the tangent to each of 1"+ and ', qis
normal to this circle at [4, 5]. Referring to equation (25), appendix 2, it is
seen that a = 0 gives the slope of both C curves since v/u = tan 6 = dlrectlon
of the flow., However, the flow direction bisects the angle between C and C~
curves and, in this case, must be collinear with them, so that the image in
the x, y plane of [4, 5] is the flow direction of points on the upper boundary and
has constant slope,

Considering the I'" curve and (56) it is seen that the value of 8 at [4, 5]

0
is given by

_m(l - )
B‘ 2u

F]

and to generate all other r curves in the region bounded by A = 0, FO’ and

q2 qz, one lets g[/ vary from 0 to [- z—(—lﬂ———-’ﬂ] $>:< with the lower limit of f3

for each (// value bemg determined by A = 0. Similarly, the I'" curves are
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5]

A
4,51
q2 - a?
Iy
(0,b) S
N, /‘l/ b
B “x \
{ e
., L0 2 P
0 re1,/ l =
. - ¥ 2,0) a2l
&*: N ¢
Y

(a) (b)

Fig. 23. Mapping.
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determined by letting (// Vary between 0 and ZT_(_lu__N_Z- Y, with B <0 and the
limits of B determl(ried b;))r I‘O andAk =0for 0<y,< Zr—(lfu—g—)_ and by 1"0 and
B = - ﬂ(lu M) tor 2u_ <Y<ty Ttis seen that points in the &, A plane are

determined by ass1gmng a pair of values 1// o (p Note also that along A = 0,
the intersection of a ' and I'” curve occurs where 1//;_ = —lp:: by the way in
which these curves are generated.

Using (43) and (46) above:

o= v, (57)

so that
+ -

W+ZT@:_B+¢1 and(p":lB_quw;_ (58)

Hence, by using (57) and (58) in (52) and (54), one can write equations

(19) of appendix 5 as:

R
+ 2u + + 2+ +
. R2 cos(ﬁ + 1//*) - R3 cos<—E§B +l//*> P

I

ac—j
(59)
2v . + + . R2 + +
a . = R2 Sll’l(B +l[/;{:) - RS sin ‘R—B + (//:k ’
c-j 3
C+: Y 4= “E X 4 (60)
g tan(—li_—ﬁ+z//;) B
r. a2'u = R, cos(B_ +(//;) - Ry cos<—_B + 1, >
=
(61)
2v (3™ +02) (Ro o
—— = Ry sin{f +¢, - Ry sin "E‘“B tY. ),
c-] 3
C: y = (62)

B— tan +¢/>B

In appendix 2 (equation (17)) it was stated that u2 + v2 - a2 > 0 was the
condition for a hyperbolic system of equations and this condition has been
assumed when (58)-(62) are given as the solution. However, at the detonation

front itself u = a,_s Vv =0, and a = ac-j’ whence u2 + V2 - a2 = 0 and the
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system is parabolic with the front, the line (1] -[4] in F'ig. 23, inthe x,y
plane being both a C+ and a C~ characteristic. This means that the solution
in the region of interest, i.e., that enclosed by the lines [2] -[1], [1]-[4],

[4] -[5] in the x, y plane, cannot be obtained from the known information at the
front since no characteristic curves intersect the front and move into the
region of interest. In the u, v plane the situation is different,

Recall that the detonation front in the x,y plane is, except for the point

e’ v = 0 in the u, v plane and the point
Therefore along I“-g the values of x,y are

[4], mapped to the single point u = a
[4] is mapped to the line I‘g.
known, i.e., x = 0, y = b, Along v = 0 the values of y are known (y = 0) and
- v=0,x=0, 0<y<h., If

the point u = ac—j’ v = 0 is avoided then the problem can be solved by working

along q2 = 62’ x = o, and y = ¢ while at u = a,

in both planes.

In the u, v plane the problem is completely solved for u and v. Near the
point u = ac_j, v = 0, the I'” curves connecting I’g and v = 0 are ghort
(relatively) and it seems clear that at least one can be found which is accurately
approximated by a straight line. The values of 8 and ¢, can be selected for a
point on both I“_(; and v = 0 and x and y are known on I“g while y = 0 onv = 0,

In other words only x on v = 0 is not known, However, along the I' curve
connecting these two points, equation (62) can be used in finite difference form
to find that x value. Graphically this corresponds to getting the slope of the
C~ curve corresponding to this I'" curve and extending a line from the point
[4] in the X,y plane with this slope until it intersects the line [1] -[2] (see

Fig. 23c,d). With this value of x on [1]-[2] the values of x and y on the C+
curve through this point can be found using (62) along C from I‘g and (60)
along CJr from I curves. In Fig. 23d the angles 91 and 92 are measured
between the normals to I“—(I; and 1_,4; and the negative v axis respectively. Their
average is used to drop the line from [0, b] in Fig. 23c to [x, 0] thus

determining X The values Xo, Yg are determined similarly using normals to

both 1"1, FZ’

the example problem considered.

+
and I‘O, I‘1 as indicated. That the procedure works is shown in
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APPENDIX 7
DERIVATION OF THE PARAMETRIC
EQUATIONS FOR AN EPICYCLOID

An epicycloid is defined as the path traced out by a point on the cir-
cumference of a circle rolling on another circle. To determine the general
equation for such a curve, consider the situation depicted in Fig. 24 which
shows a part of the path of the point Q on the circle of radius q which was
originally at point P on the circle of radius ac—j' The two circles are in
contact at point R and since there is no slipping allowed, the length along the
inner circle from P to R (called C) is the same as the length along the other

circle from @ to R.

Fig, 24

From Fig. 24, note the following relations:

C C
Be=g—> ==, (1)
C-J q
whence
a_ B
o= 20 , (2)
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at2y =7 orq/:g——%, (3)
L ORQ = a +7. (4) -
Combining (3) and (4): .
LORQ=5+5. (5)

Using the law of sines in triangle RSQ:

FQ_._g (6)

sinao siny '’

Using (3) in (6) and sin 26 = 2 sin # cos O:

*d2sin%cos%:

RQ--48ine . 2 qsing. (7)
sin—g-% cos%

Now using (5):

o ~Lone-(5-7) <5+5-Fra-n+s. @

Putting (2) in (8):
a_ B
6 =B+ L_J ] (9)
29
Putting (2) in (7):
a_ .B
RQ =2 § sin —, (10)
2q

For the coordinates of the point Q, refer again to Fig. 24:

u' =a_ . cosp + RQ sin s,
! (11)

1 = 1 —_ RO
A ac—j sin B - RQ cos §.

Using (9) and (10) in the first of (11):

_ aC_jB ac_.B
u'=aC_.cosB+2qsin —— sin (B + _J
! 29 2q
- a, B a_._.B a_ B
a,_.cosf+2q sin ——d (sinB cos =3 + cos B8 sin =24 )
! 24 24 24
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Now, 2 sin—g cos g— = gin 6 and 2 sin2 g = 1 - cos 0, so that this last

expression may be written as

i a, B ] a,_f
u' =a_ .cosfB + qsinf sin J +3cospB-qcosB cos
c-j - : -
q q
or
: _ a2, P o
u'=(ac_.+q) cos B - q|cos f§ cos —=— - sin f sin —— | |
. q q
whence _
_ } a,_.*tq
u' = (ac_. + qg) cos B - q cos J_ B (12)
J q
Similarly
_ B a _;*t q
vt = (a_ .+ Qq) sinB—qsin»—-—J--—8. (13)
C-] El

To rotate the u', v! axes through the angle -y, as shown, use the

relation
il//*
ut+iv-=e (' + iv'), where i = V1, (14)
or
u=u cosy, - Vv sing,,
(15)
v=u' sinyg, +v' cosy,.
Using (12) and (13) in (15),
_ . acta
u = (aC‘j +q) cos B cosy, - q cos _J COS
' q
_ _aeta
- (ac—j + q) sin B sin Yy T qsin ;] B siny,,
q
or.
_ _ a_ .t q
u = (ac_j +q) cos B+y,) -q cos(—-—_J————B + W*) , (16)
q
and similarly
_ _ a._;ta
v = (ac_j +q) sin B +y¢,) - q sin(——_J————*B + (//7:) (17)
q
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It is clear from Fig. 24 that 8§ > 0 generates curves going counterclock-

wise and 8 < 0 generates curves going clockwise, and that to sweep out all the

counterclockwise curves one varies ¢, and similarly for the clockwise curves.
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APPENDIX 8

THE NEWTON-RAPHSON METHOD

If one is given the equation f(x) = 0, and lets x' + ht

ith approximation of x and h' is the error in the ith approximation, then

) Loy L df
ht = -%i— where f'(x) " I%
' (x)

and

S IR B S 0 U

fr(x")
Let
' R R

£(B) = sin [B + %((p-!- - zj/_)} - E—Z sinlﬁ—i—ﬁ + —é—((p+ -(p_)} =0,

then

Ry

fr(R) = COS{B +é—(¢;+ - ([/_)} - CcOs

so that to solve (3) for 8 one solves by iteration:

1+ o
j;;ﬁ + 50 ‘#/)}

. R R .
pr=B - ; R,
cos |8 + 34" - u7)] - cos o L w“)]
Bi+1 i
until —i—‘B_S some reasonable limit.
B

“See ref. 8, p. 192.

i.
X where x is the

(1)

(2)

(3)

(4)

(5)
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APPENDIX 9
BERNOULLI' S EQUATION FOR "WILKINS"
EQUATION OF STATE

The first law of thermodynamics can be written as:
T dn = de + pd (&), (1)
p
For isentropic flow dn = 0, whence:
de = -pd(1). (2)
P
From equation (8), appendix 1,
de +udu+vdv+Ldp+pdl)=o, (3)
) P
and combining (2) and (3):
_ 1
udu+vdv——5dp. (4)

Now the relation (4) holds along lines where dn = 0, i.e., along path

or flow lines. Hence, (4) may be written as

2
1d 2 2,_ 1ldp_ a“dp
gas W V)T -5as T 5 as
or
p(S) _2
u2 + v2 + 2 S a dp = constant, (5)
p(s*) p
where S, S, are two values of a parameter along a path line,

a2 = sound speed defined as in appendix 1.
Equation (5) is the well-known Bernoulli' s equation,
To express (5) in terms of the Wilkins equation of state, recall the

definition of relative volume,
V = pO/P,
and the expression for a2 from equation (2), section II, part A:
5 1| AQ 2 v, (1 FeC
a = — + BRV ™ e + —
Py | vR1 Vv
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Using these last two expressions, it is clear that to evaluate (5) the following

expression must be integrated:

(1 +w)C
AQ RBV o RV | S

SP(S) azdp ) SV 1

p(s,) P vy Fo

The integration of (6) is quite straightforward and the resulting equation is:

(1 + w)C
8 (7)

Const = u2+v2+—2— ————A—Q——-———+ B(V+l e—RV+
Q R W

Po -yl wV
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APPENDIX 10
SOLUTION FOR CHARACTERISTICS IN THE HODOGRAPH PLANE
FOR THE "WILKINS" EQUATION OF STATE

For the plane problem using the Wilkins equation of state the arguments
in appendix 6 are unchanged down through equation (16). As indicated in
appendix 6 the basic equations are of the same form for both sets of curves

(I") and equation (16), appendix 6, can be written as
dg . _

where ¢ is the angle the tangent to a I' curve makes with the positive u axis
and g is the magnitude of the velocity component normal to a I" curve,

If equation (7), appendix 9, is evaluated at the Chapman-Jouguet point

(detonation front), then

: (1 +w)C
q2+52— AQ _1+B(V+1R)e‘RV+ . s|.p 2)
0l @Q-1DV ) _ wV
where
-RV_ . (1 +w)C
Dzag__+3_[__%+3(vc_.+%)e i, 5|
T Pol@-1nvy, J wv¥ .
c-j c-j
(3)
and '
2-u2+v?-a+ g (4)
Combining (2), (3), and (4):
(1 +w)C
g2=D—a2_.2_[———————-—AQ artBVrgle™Vr——= (5)
Pol@-1v wvY
Differentiating (5) with respect to y:
0, dg AV _ (_da®  2a%)av ©)
EIVEH CAZMER AW 78
Using (1):
dg d 4
a%ag -=-a. (7

Hence, putting (7) in (6):




W daz 2a2’
LA

whence
A@E_ﬁ
d¢:2dga V.

(8)

(9)

If (9) can be integrated, theny can be determined as a function of V and

the relations (13) and (14) of appendix 6 can be used to determine u and v, and

+ - . .
the equations for C and C will determine x and y.

+ +
From the considerations in appendix 6 it is seen that for I' (and ¢y ),

g<0;and for I'" (andy ), g > 0.
positive quantity, then letting
2 2

1da® a”
pevy = =9V
ga
one has
Vv
+ +
l[/ ) _S F(V)dv + ¢'>;<
\/T;;c
and

i

_ %

If the symbol g is considered to be a

(10)

(11)

(12)

Hence, with g given by the square root of (5), a2 by equation (2), section II,

+ -
part A, ¢y by (11), andy by (12), equations (13) and (14) from appendix 6

can be used to give:

+ + .+
I'': u=acosy +gsiny,
.+ +

v=asiny -gcosy ,

I'': u=acosy -gsiny ,

asiny + gcosy ,

<
t

provided the integral in (11) and (12) exists and is finite,

(13)

(14)

With a considerable amount of work it can be shown numerically that
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F(v) < =F1(v)

where p< 1 and M' = constant, as V——;Vc_j. For reference:

LIAQQ T, ppay2,-RV 4 (1 +w)@+uCy)
2 Q w+1 pO
v V I+ )CV 172
W
e BRvZe RV + 8
Voo LV s

and
RV __./2
M' = Me 5 Vool (VRB Veoi -

Since the integral of F' (v) exists for p < 1 for an arbitrary upper limit,
the integral of F(v) would also exist by the comparison test if one could be
sure that the function ¢ was single valued at V = Vc— .. That this is indeed
true can be seen by considering Fig. 5 of UCRL-7797 which indicates that
near VC . the material behaves like an ideal gas. The characteristics for the

ideal gas equation of state were shown to become horizontal at V = Vc—j’ and
the same result should follow in this case.

It seems clear, therefore, that the integral in (11) and (12) has a finite
value and can be evaluated numerically, This point is discussed further in
section II, part B.

At the intersection of a F+ and I'” curve, the relations (13) and (14)

yield the following formulas for finding ¢~ in terms of 1//+:

- (a2 - g2) sin ¢+ - 2ag cos zp+ . (15)

tan ¢
(a2 - g2) cos 1//+ + 2ag sin ¢/+

Along v = 0, (13) and (14) yield:
tany” = £ (16)

and
+

o= -y (17)
- + -
To findy andy at the intersection of aI' curve and v = 0,

asiny +gcosy =0




.
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must be solved for ¢ . This is done by the use of the Newton-Raphson method

described in appendix 8 to find V from

i-1
g(v'Th)
1-1)} (18)

i i-1 [ |
a(v b tan g (v

vVi=-V

where V' is the ith estimate of V; Y and ¢+ are then determined from (16) and

(17).
+ -
In a similar mannery andy are determined at the intersection of I‘+

and I'” by finding V from:

v

iyl gv?%{mnwﬂv%lf+mnwwvflﬂ (19)
a(vi™l lcos w+(V1-1) - cos w_(Vl-l)‘]

and ¢+ and iy~ are calculated from (11) and (12).
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APPENDIX. 11
TABLES OF OUTPUT FOR PRESSURE CURVES

Table 1. Pressure at various distances from the centerline of the H. E. as
a function of distance from the front in units of the initial thickness of the slab,
for the ideal gas equation of state in plane geometry.

y = 0.0% y = 0.1 y = 0.2 y = 0.3 y = 0.4
X P x P X P X P X P

0.0013 0.3900 0.0016 0.3900 0.0022 0.3900 0,0033 0.3899 0,0066 0.3887
.0189 L3894 .0192 .3893 .0206 .3886 .0181 .3877 L0212 L3777
.0407 .3873 L0415 .3866 L0411 .3846 .0389 L3794 .0448 .3422
L0649 .3831 .0599 .3830 .0559 .3800 L0613 .3655 .0600 .3140
.0822 .3790 .0835 L3765 .0803 .3705 .0828 .3482 .0744 .2870
L1127 L3698 .1055 L3691 L1113 .3546 .1035 .3293 .0916 .2569
L1299 .3635 .1138 .3659 L1274 .3452 L1179 .3157 .1257 ,2084
.1439 .3579 .1443 .3527 .1402 .3373 .1292 .3049 L1361 .1965
.1666 .3480 L1662 L3421 L1510 .3304 L1606 L2759 .1447 .1876
.1853 .3392 .1839 .3329 .1904 .3045 .1820 .2573 .1738 .1624
.2016 L3311 .1992 .3247 .2182 L2861 .1987 .2437 .2074 L1411
.2230 L3109 .2250 .3103 .2405 L2717 .2127 L2331

.2421 L3097 .2469 L2979 .2505 ,2598 _b .2459 .1233
.2596 .3001 .2662 .2869 L2763 .2496 L2619 .2006 L2711 L1144
.2811 .2882 .2837 L2768 .2914 2407 .2955 .1822 .2903 .1086
.3012 L2771 L2999 L2676 .3052 .2328 .3060 L1044
.3201 .2666 .3224 L2551 L3181 2257 .3219 .16 96

.3427 2542 .3431 L2437 L3415 .2133 .3441 .1602

.3600 .2448 L3626 .2333 .3627 .2027 .3634 .1526 .3604 .0927
L3811 .2337 L3811 L2237 .3821 .1935 .3808 L1463

4017 .2231 .4046 L2120 .4002 L1853 .3966 L1410 .3967 L0866
.4219 L2130 L4215 .2038 L4172 .1780 .4248 L1321 .4250 .0825
L4419 .2033 4433 .1937 L4413 .1682 .4376 L1284 .4486 .0794
4617 L1941 .4592 .1866 .4638 .1595 4614 L1219 4692 .0769
.4814 L1863 L4799 L1777 .4852 L1517 .4831 L1164 4876 .0748
.5012 L1768 .5002 .1693 .5058 .1447 .5033 L1116 .5044 .0730
.5200 .16 86 .5201 L1615 .5190 L1404 .5223 L1073 .5199 0714
.5408 .1608 .5398 L1541 L5384 L1343 .5403 .1035 .5479 .0686
.5608 L1533 .5593 .1472 .5634 L1269 L5576 .1000 .5608 L0674
.56810 L1461 .5835 L1390 5816 L1218 .5822 .0953 .5849 .0652
.6015 L1391 .6027 .1328 .5096 L1170 .5979 .0924 .5962 .0642
6222 L1324 .6220 L1270 L6172 L1125 .6207 .0884 6177 .0623
6390 L1272 L6412 L1214 .6403 L1069 .6426 .0848 .6379 .0606
L6604 .1210 .6605 L1161 L6575 .1030 .6638 .0814 6571 L0591
.6821 .1150 L6799 L1110 .6802 .0980 .6846 .0783 .6845 .0569
.7043 L1092 .6993 .1062 L7027 .0934 .6982 ,0763 L7019 .0556
.7223 .1047 .7239 L1004 L7194 .0901 L7183 .0736 L7187 .0543
.7407 .1004 .7437 .0960 L7417 .0859 .7380 .0709 7432 .0625
L7595 L0962 L1637 .0918 L7585 .0830 L7639 .0676 L7590 L0514
.7834 L0911 .7840 .0878 .7807 .0792 .7830 .0653 .7822 .0497
.8030 .0872 .7993 .0848 .8031 L0756 .8020 L0631 L7973 .0487
.8230 .0834 .8200 .0811 .8199 L0731 .8208 .0610 .8195 .0472
.8435 L0797 .8410 L0775 .8424 .0698 .8397 .0590 .8413 .0458
L8501 L0770 . 8622 .0740 .8594 .0675 .8585 L0571 .8628 .0444
.8804 L0735 .8839 .0707 .8821 .0645 .8834 .0546 .8770 .0434
.9023 .0702 .9003 .0683 L8004 .0623 .9020 .0529 .8980 .0423
.9246 L0669 L9226 L0652 L9225 .0595 .9207 .0512 .9189 L0411
.9418 .0646 .9396 .0630 .9400 L0575 .9305 .0495 .9396 .0399
L9593 .0623 L9626 .0601 L9637 .0550 .9582 .0480 .9602 .0388
0,9832 0.0593 0,9801 0.0580 0.9816 0,0531 0.9834 0.0459 0.9807 0.0377

ay = distance from centerline in units of initial thickness.

distance from front in units of initial thickness.
p = pressure in megabars,

bBlank spaces were left where the calculated data did not fall near the values of the x coordinate being used
in the other y = constant lincs.
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Table 2. Pressure at various distances from the centerline of the H. E.
as a function of the distance from the front in units of the initial slab thick-

ness, for Wilkins equation of state in plane geometry.

y = 0.0% y = 0.1 y=0.2 y =03 y =04

X P X P X P X P X P

0.0047 0.3904 0.0064 0.3903 0.0088 0.3901 b
.0211 .3893 .0192 .3894 .0204 .3886 0.0222 0.3857 0.0265 0.3656
.0404 .3863 .0388 .3860 .0375 .3842 .0393 .3763 .0436 .3310
.0601 .3813 .0593 .3807 0618 .3745 .0637 .3558 .0592 .2951
.0788 .3762 .0779 L3744 L0796 .3649 L0779 .3411 .0817 .2462
.1002 .3684 .1013 .3645 .0981 .3530 L0977 .3188 .1021 .2090
L1216 .3590 .1208 .3545 L1212 .3362 L1162 .2973 .1250 .1760
L1417 .3489 .1400 .3438 .1396 .3222 .1417 .2684 .1450 L1537
L1617 .3378 L1606 L3311 L1597 .3061 L1574 .2515 .1630 L1376
L1817 .3257 .1810 L3178 L1792 .2904 .1788 .2303 L1797 .1254
.2021 .3128 .2011 .3042 .2037 .2708 .2028 .2091 .1989 .1138
.2187 .3019 .2213 .2902 .2229 .2559 L2214 .1939 .2198 .1035
.2399 .2871 .24186 .2760 .2418 .2417 .2396 .1807 .2390 .0958
.2618 L2729 .2622 L2617 .2605 .2282 .2598 L1677 .2569 .0897
.2799 .2607 L2778 .2509 .2790 .2154 .2829 .1542 L2769 .0839
.2985 .2481 .2990 .2366 .2976 .2033 .2981 L1462 .2991 L0784
L3177 .2354 .3207 .2224 .3225 .1880 .3205 .1356 .3208 .0738
L3377 .2225 .3373 L2119 .3413 L1772 L3424 .1263 .3408 .0701
.3584 .2095 .3600 .1980 .3603 .1670 .3569 L1207 .3566 ¢ L0675
.3801 .1964 L3775 .1878 L3795 L1572 .3785 L1129 .3824 .0637
.4027 .1833 .4015 L1744 .3989 .1479 .4000 .1059 .3993 L0614
.4205 L1735 .4201 L1648 .4188 .1390 .4216 .0995 4159 .0594
.4389 .1638 .4392 .1551 .4390 .1306 .4433 .0936 .4402 .0566
.4580 .1542 .4590 .1457 .4596 .1225 .4579 .0898 .4561 .0549
.4780 .1447 4794 .1366 .4808 .1148 .4800 .0846 .4799 .0525
.4990 .1354 .5005 L1277 .5025 L1074 .5024 .0796 L5037 .0503
.5209 L1262 .5225 L1191 .5173 .1027 .5176 .0765 .5195 .0489
.5439 L1172 .5376 L1136 .5401 L0959 .5408 .0720 .5434 L0469
.5599 L1114 L5611 L1055 .5637 .0894 .5565 .0691 .5594 .0456
L9765 .1056 L5773 .1002 .5798 .0852 .5806 .0650 .5837 .0437
L6027 L0972 .6026 .0926 .5964 .0812 L5970 .0624 .6001 .0424
.6209 .0918 .6201 L0877 .6220 .0754 .6222 .0586 6167 L0412
.6400 .0864 .6382 .0829 .6396 L0716 .6395 .0562 6421 L0395
.6598 .0812 .6570 .0783 L6577 .0680 L6571 .0538 .6593 .0383
.6806 .0762 6764 L0739 .8765 .0645 .6843 .0504 .6768 .0372
.7023 L0713 .6965 .0695 .6857 L0612 L7030 .0482 L7037 .0355
L7250 .0666 L7174 .0654 L7156 .0579 L7223 .0461 .7220 .0344
L7369 .0643 L7392 .0614 L7361 L0548 .7420 .0441 .7408 .0334
L7615 .0598 L7619 .0575 L7573 .0518 L7623 .0421 L7600 .0323
L7874 .0555 .7856 .0638 L7792 .0489 .7832 .0402 L7796 L0313
.8009 .0535 .7978 .0520 .8020 .0461 . 8047 .0383 L7997 .0302
.8291 .0494 .8231 .0485 . 8257 .0434 .8157 .0374 .8204 .0292
.8438 .0475 . 8362 L0468 .8378 L0421 .8383 .0356 .8416 .0282
.8590 .0456 .8634 .0436 .8629 .0396 .8617 .0339 . 8634 L0273
.8746 .0437 L8776 .0420 L8759 .0384 .8858 .0323 L8745 .0268
.8075 .0401 .9069 .0390 .9026 .0361 .8982 .0315 .8973 .0258
.9248 .0384 .9222 .0376 .9164 .0349 .9237 .0299 .9208 .0249
.9427 .0368 L9379 .0362 .9449 .0328 .9368 L0291 .9450 .0240
L9612 .0352 .9541 .0348 L9597 L0317 .9638 .0277 .9574 .0235
0.9805 0.0336 0.9878 0.0322 0.9748 0.0307 0.9778 0.0270 0,9829 0.0227
ay = distance from centerline in units of initial thickness.
% = distance from front in units of initial thickness.
p = pressure in megabars,

bBlank spaces were left where the calculated data did not fall near the valuesof the x coordinate being used

in the other y = constant lines,
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Table 3. Pressure at various distances from the centerline of the H. E.
as a function of the distance from the front in units of the initial thickness
of the cylinder, for Wilkins equation of state in cylindrical geometry, 2

y = 0.0° y=0.1 y =02 y - 0.3 v =0.4
X P X P X T X P X P
0.0502 0.3840 -¢
.0519 .3832 0.0517 0.3823 0.0524 0.3784 0.0522 0.3659 0.0515 0.3119
.0539 .3822 .0540 .3813
.0560 .3813 ,0563 .3802 ,0554 .3766 .0565 .3612
.0584 .3804 .0587 .3791 0584 .3747
.0609 .3795 L0811 .3781 L0615 .3728 .0610 .3562
.0637 .3782 0635 L3771 .0647 .3707
L0668 .3770 .0664 .3758 L0672 .2724
sl 0688 .3747
.0701 .3756 0715 .3734 L0711 .3663 .0700 .3458
.0738 .3740 ,0743 .3640 .0745 .3404 .0748 .2549
L0779 .3722 L0776 .3704 L0777 .3616
.0822 .3706 .0810 .3685
.0847 .3665 0844 .3564 .0837 .3290
.0868 .3689 0877 3539 .0884 .3226
.0923 .3659 .0932 .3616 .0919 .3504 .0903 .2209
.0986 .3622 .0981 .3585 .0089 ,3447 0978 .3105
.1060 .3578 .1034 .3551 .1030 .3411 .1026 .3039 0.1048 0.1942
.1144 .3526 .1091 .3514 1121 .3331 1122 .2908
L1173 .3282 .1170 .2846
.1241 .3461 L1224 .3419 .1289 L3173 L1269 .2713
.1356 .3382 .1309 .3354 .1356 .3107 .1368 ,2583
.1406 .3279 1424 .2511
.1493 .3281 .1518 .3187 .1505 2960 .1532 .2381
.1658 .3155 .1588 .2876 1596 .2303
1798 .2947 .1801 .2660 .1737 .2137
.1861 .2086 .1932 .2530 .1898 1963
.1978 .2785 .2084 1778
,2181 .2767 .2192 .2595 .2256 .2216 0.2184 0.1685
.2454 2474 .2461 .2353 .2454 .2038
.2915 .2082 .2988 .1609
.3236 1717 0.3334 0.1367
0.3594 0.1560 .3845 .1315
0.4745 0.0869

2This table, unlike Tables 1 and 2, includes all the output calculated by the program.
by = distance from centerline in units of initial thickness.
x = distance from front in units of initial thickness.
p = pressure in megabars.
®Blank spaces were left so that the x values across the table would be more or less comparable.
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